- Define the sawtooth function and its range and period.
- Calculate the Fourier series coefficients (an and bn).
- Create a Fourier series approximation using the calculated coefficients.
- Plot and compare the original function with its Fourier series approximation.
how to calculate first n terms of the sawtooth Fourier series and plot the results in figure?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/761171/image.png)
0 comentarios
Respuestas (1)
Gautam
el 5 de Feb. de 2025 a las 11:02
Editada: Gautam
el 5 de Feb. de 2025 a las 11:04
Hi Ismita
To calculate the Fourier series coefficients and plot the Fourier series approximation for the given sawtooth function, follow these steps:
You can modify the code below which shows calculation and plotting of a fourier series approximated function using the first 10 terms
% Define the period and the range for x
T = 2*pi; % Period of the periodic function
x = linspace(-T/2, T/2, 1000); % Range of x values
% Define the given piecewise function
f = @(x) ((-1/2)*(pi+x).*(x >= -pi & x <0) + (1/2)*(pi-x).*(x>=0 & x<=pi));
% Number of terms in the Fourier series
N = 10;
% Calculate the Fourier series coefficients (an and bn)
a0 = (1/T) * integral(@(x) f(x), 0, T);
an = zeros(1, N);
bn = zeros(1, N);
for n = 1:N
an(n) = (1/T) * integral(@(x) f(x).*cos(n*pi*x/2), 0, T);
bn(n) = (1/T) * integral(@(x) f(x).*sin(n*pi*x/2), 0, T);
end
% Create the Fourier series approximation
F = a0/2;
for n = 1:N
F = F + an(n) * cos(n*pi*x/2) + bn(n) * sin(n*pi*x/2);
end
% Plot the original function and its Fourier series approximation
figure;
plot(x, F);
xlabel('x');
ylabel('f(x)');
0 comentarios
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!