Fit a square root function to data
28 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I would like to fit a function of form y=K*x^.5+c, where Matlab finds the best fit values of K&c. What's the best way to do this? Thanks!
0 comentarios
Respuestas (1)
Star Strider
el 15 de Sept. de 2014
Editada: Star Strider
el 15 de Sept. de 2014
Your function is actually linear, so you can use any linear regression function such as the Statistics Toolbox regress function, since it supplies several statistics on the fit.
Otherwise, use the mldivide function or ‘\’ operator. Assuming x and y are row vectors in your original data:
x = linspace(0, 10, 15); % Create Data
y = 3.*sqrt(x)+5 + 0.1*randn(size(x)); % Create Data
p = [sqrt(x)' ones(size(y'))]\y'; % Estimate Parameters
The vector of estimated parameters correspond to p(1)=K and p(2)=c.
If x and y are column vectors, eliminate the transpose (') operators in the ‘p’ calcualation.
You can also use polyfit and its friends, remembering to use sqrt(x) instead of x in the argument list:
yp = polyfit(sqrt(x), y, 1);
0 comentarios
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!