Process Noise “Q” covarience matrix in a kalman filter

5 visualizaciones (últimos 30 días)
Farhan
Farhan el 16 de Sept. de 2014
Respondida: John Petersen el 2 de Oct. de 2014
I am trying to implement a Kalman filter on a Phasor Measurement Unit (PMU) values. I meaured the signal from PMU and give those meaurement as input to Kalman filter to get best estimate. I do not have a Process model. I assume A, B, C and D matrices.
My question is while calculating Q covarience matrix (process noise) in MATLAB, should i give the whole measurement as input to "cov" function in MATLAB or instead of whole measurement i should give the error(actual- measurement) to "cov" function to calculate Q?
Please guide me? Thanks in advance.
Farhan

Respuestas (1)

John Petersen
John Petersen el 2 de Oct. de 2014
The measurement error is not used to update any covariance matrices in a Kalman filter.

Categorías

Más información sobre Online Estimation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by