how can I evaluate a four fold integral with four variables numerically ?
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
ebtehal
el 22 de Sept. de 2014
Comentada: Mike Hosea
el 29 de Sept. de 2014
i used the functions quad, dblquad, and triplequad to evaluate up to three integrals, but i need to evaluate 4 integrals, how can i do that?
2 comentarios
Muthu Annamalai
el 22 de Sept. de 2014
Can you separate the kernel of the integral? This is usally the better way to solve the problem. It also provides a computational speeds up to the solution as well from O(n^4) to say 2*O(n^2) if you can split kernel into a function (product?) of 2 double integrals.
HTH.
Respuesta aceptada
Mike Hosea
el 23 de Sept. de 2014
Editada: Mike Hosea
el 23 de Sept. de 2014
There's one thing that people often find difficult: the requirement that the integrand accepts arrays and returns arrays, operating element-wise.
integral(@(x)integral3(@(y,z,w)f(x,y,z,w),ymin,ymax,zmin,zmax,wmin,wmax),xmin,xmax,'ArrayValued',true)
For smooth integrands over finite regions, a double integral of a double integral is usually a lot faster
integral2(@(x,y)arrayfun(@(x,y)integral2(@(z,w)f(x,y,z,w),zmin,zmax,wmin,wmax),x,y),xmin,xmax,ymin,ymax)
5 comentarios
Mike Hosea
el 29 de Sept. de 2014
You can't use integralN, but you should be able to do this:
quad2d(@(x,y)arrayfun(@(x,y)quad2d(@(z,w)f(x,y,z,w),zmin,zmax,wmin,wmax),x,y),xmin,xmax,ymin,ymax)
If your version is so old that you don't have QUAD2D, you can try this with DBLQUAD, but I don't recommend it. BTW, depending on how x and y are used in f(x,y,z,w), you might need to expand those arguments manually like so:
quad2d(@(x,y)arrayfun(@(x,y)quad2d(@(z,w)f(x*ones(size(z)),y*ones(size(z)),z,w),zmin,zmax,wmin,wmax),x,y),xmin,xmax,ymin,ymax)
Más respuestas (1)
Roger Stafford
el 22 de Sept. de 2014
Set up a function which, when given the value of the outermost variable of integration, calculates the triple integral of the inner three iterated integrals for the particular value of that fourth variable. Then take the integral of the value of this newly-defined function over the appropriate limits for that fourth variable. There's nothing very difficult about that. Let the computer do all the hard work. You can expect it to take a fairly long time at it. That's inherent in doing integration in four dimensions.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!