Problem with simulating an AR(2) process
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ferry
el 12 de Oct. de 2021
Respondida: Ferry
el 21 de Oct. de 2021
I'm new in Matlab. I‘m trying to simulate a second-order autoregressive process which is stationary, but end up with an explosive pattern. I don't know why I cannot get it right. The process I simulate is
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/764761/image.png)
I made the following programm to simulate it for 200 periods, with initial values ![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/764776/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/764776/image.png)
rng(1);
% parameters
rhho2 = [30, 1.2, -0.5];
% preallocation
N = 200 ;
y = zeros(N, 1);
y(1:2, :) = [100; 100];
% innovation
innovation = randn(200, 1);
for t = 3 : N
y(t, :) = rhho2 * [1; y([t-2, t-1], :)]+ innovation(t, 1);
end
The plot for the simulated resut shows an explosve pattern, being contradictary to the expection of a stationary process
% plot
plot(y, "-r")
yline(100)
By using the econometric toolbox, this simulated results is stationary. So what is problem with my simulation program?
rng(1)
model2 = arima("constant", 30, "AR", [1.2, -0.5], "Variance", 1);
Y2 = simulate(model2, 200);
plot(Y2, "-r")
yline(100)
0 comentarios
Respuesta aceptada
Más respuestas (1)
Pavan Guntha
el 20 de Oct. de 2021
Hello Ferry,
The reason for mismatch in the outputs is due to the misordering in the following equation:
y(t, :) = rhho2 * [1; y([t-2, t-1], :)]+ innovation(t, 1);
This is supposed to be as follows as per the equation presented in the question:
y(t, :) = rhho2 * [1; y([t-1, t-2], :)]+ innovation(t, 1);
Hope this helps!
Ver también
Categorías
Más información sobre Conditional Mean Models en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!