Empty sym: 0-by-1

3 visualizaciones (últimos 30 días)
Alessio Falcone
Alessio Falcone el 19 de Oct. de 2021
Comentada: Alessio Falcone el 19 de Oct. de 2021
Hi everyone !
I have some problems with a system of equations that I can't manage to solve. Could you please help me ?
Tc=400;
Pc=35;
R=0.0821;
Z=0.34;
syms Vc a b c;
X=R*Tc*(1-c)/(Vc)-(a*b*(c^2)/(Vc^2))-(R*Tc/b)*log(1-((c*b)/Vc))-Pc;
eqn1=R*Tc*(1-c)/(Vc)-(a*b*(c^2)/(Vc^2))-(R*Tc/b)*log(1-((c*b)/Vc))-Pc==0
eqn2=diff(X,Vc)==0
eqn3=diff(X,Vc,2)==0
eqn4=(Pc*Vc)/(R*Tc)-Z==0
sol=vpasolve([eqn1,eqn2,eqn3,eqn4],[a,b,c,Vc]);
Vc=sol.Vc
a=sol.a
b=sol.b
c=sol.c
Could you please help me ?

Respuesta aceptada

Walter Roberson
Walter Roberson el 19 de Oct. de 2021
Q = @(v) sym(v);
Tc = Q(400);
Pc = Q(35);
R = Q(0.0821);
Z = Q(0.34);
syms Vc a b c;
%assume([b, c], 'real')
assumeAlso(b ~= 0 & c ~= 0)
X = R*Tc*(1-c)/(Vc)-(a*b*(c^2)/(Vc^2))-(R*Tc/b)*log(1-((c*b)/Vc))-Pc;
eqn1 = R*Tc*(1-c)/(Vc)-(a*b*(c^2)/(Vc^2))-(R*Tc/b)*log(1-((c*b)/Vc))-Pc == 0
eqn1 = 
eqn2 = diff(X,Vc) == 0
eqn2 = 
eqn3 = diff(X,Vc,2) == 0
eqn3 = 
eqn4 = (Pc*Vc)/(R*Tc)-Z == 0
eqn4 = 
eqns = simplify([eqn1, eqn2, eqn3, eqn4])
eqns = 
Vc_sol = solve(eqns(end), Vc)
Vc_sol = 
eqns2 = simplify(subs(eqns(1:end-1), Vc, Vc_sol))
eqns2 = 
partial_a = solve(eqns2(2), a)
partial_a = 
eqns3 = simplify(subs(eqns2([1 3:end]), a, partial_a))
eqns3 = 
partial_b = solve(eqns3(2), b, 'returnconditions', true)
partial_b = struct with fields:
b: [2×1 sym] parameters: [1×0 sym] conditions: [2×1 sym]
partial_b.b
ans = 
partial_b.conditions
ans = 
eqns4_1 = (subs(eqns3([1 3:end]), b, partial_b.b(1)))
eqns4_1 = 
eqns4_2 = (subs(eqns3([1 3:end]), b, partial_b.b(2)))
eqns4_2 = 
sol_c_1 = vpasolve(eqns4_1, c)
sol_c_1 = Empty sym: 0-by-1
sol_c_2 = vpasolve(eqns4_2, c)
sol_c_2 = 
141.68652558079973320034185988983
full_c = sol_c_2
full_c = 
141.68652558079973320034185988983
full_b = subs(partial_b.b(2), c, full_c)
full_b = 
0.00017449682895104484527054335897185
full_a = subs(subs(partial_a, b, partial_b.b(2)), c, full_c)
full_a = 
19.294808147837450107863804722783
full_Vc = Vc_sol
full_Vc = 
sol = [full_a, full_b, full_c, full_Vc]
sol = 
subs([eqn1, eqn2, eqn3, eqn4], [a, b, c, Vc], sol)
ans = 
vpa(ans)
ans = 
So the solution works to within round-off error.
  3 comentarios
Alessio Falcone
Alessio Falcone el 19 de Oct. de 2021
Alessio Falcone
Alessio Falcone el 19 de Oct. de 2021
Thank you very much Mr. Roberson

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by