How to get the value of value function in soft actor critic?

3 visualizaciones (últimos 30 días)
ryunosuke tazawa
ryunosuke tazawa el 20 de Oct. de 2021
Respondida: Aneela el 7 de Nov. de 2024
I want to know the way to get the value of value function.
I am using soft actor critic.
Someone tell me the way?
% Soft-actor-critic
clear all;
close all;
Length = 1;
Mass = 1;
Ts = 0.01;
Theta_Initial = -pi;
AngularVelocity_Initial = 0;
SimplePendulum = classPendulum(Length, Mass, Theta_Initial, AngularVelocity_Initial, Ts);
ObservationInfo = rlNumericSpec([2 1]);
ObservationInfo.Name = 'States';
ObservationInfo.Description = 'Theta, AngularVelocity';
ActionInfo = rlNumericSpec([1 1],'LowerLimit',-100,'UpperLimit',-5);
ActionInfo.Name = 'Action';
ActionInfo.Description = 'F';
ResetHandle = @()myResetFunction(SimplePendulum);
StepHandle = @(Action,LoggedSignals) myStepfunction(Action,LoggedSignals,SimplePendulum);
env = rlFunctionEnv(ObservationInfo, ActionInfo, StepHandle, ResetHandle);
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
numObs = obsInfo.Dimension(1);
numAct = numel(actInfo);
device = 'gpu';
% CRITIC
statePath1 = [
featureInputLayer(numObs,'Normalization','none','Name','observation')
fullyConnectedLayer(400,'Name','CriticStateFC1')
reluLayer('Name','CriticStateRelu1')
fullyConnectedLayer(300,'Name','CriticStateFC2')
];
actionPath1 = [
featureInputLayer(numAct,'Normalization','none','Name','action')
fullyConnectedLayer(300,'Name','CriticActionFC1')
];
commonPath1 = [
additionLayer(2,'Name','add')
reluLayer('Name','CriticCommonRelu1')
fullyConnectedLayer(1,'Name','CriticOutput')
];
criticNet = layerGraph(statePath1);
criticNet = addLayers(criticNet,actionPath1);
criticNet = addLayers(criticNet,commonPath1);
criticNet = connectLayers(criticNet,'CriticStateFC2','add/in1');
criticNet = connectLayers(criticNet,'CriticActionFC1','add/in2');
criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
'GradientThreshold',1,'L2RegularizationFactor',2e-4,'UseDevice',device);
critic1 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
'Observation',{'observation'},'Action',{'action'},criticOptions);
critic2 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
'Observation',{'observation'},'Action',{'action'},criticOptions);
%ACTOR
statePath = [
featureInputLayer(numObs,'Normalization','none','Name','observation')
fullyConnectedLayer(400, 'Name','commonFC1')
reluLayer('Name','CommonRelu')];
meanPath = [
fullyConnectedLayer(300,'Name','MeanFC1')
reluLayer('Name','MeanRelu')
fullyConnectedLayer(numAct,'Name','Mean')
];
stdPath = [
fullyConnectedLayer(300,'Name','StdFC1')
reluLayer('Name','StdRelu')
fullyConnectedLayer(numAct,'Name','StdFC2')
softplusLayer('Name','StandardDeviation')];
concatPath = concatenationLayer(1,2,'Name','GaussianParameters');
actorNetwork = layerGraph(statePath);
actorNetwork = addLayers(actorNetwork,meanPath);
actorNetwork = addLayers(actorNetwork,stdPath);
actorNetwork = addLayers(actorNetwork,concatPath);
actorNetwork = connectLayers(actorNetwork,'CommonRelu','MeanFC1/in');
actorNetwork = connectLayers(actorNetwork,'CommonRelu','StdFC1/in');
actorNetwork = connectLayers(actorNetwork,'Mean','GaussianParameters/in1');
actorNetwork = connectLayers(actorNetwork,'StandardDeviation','GaussianParameters/in2');
actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
'GradientThreshold',1,'L2RegularizationFactor',1e-5,'UseDevice',device);
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,actorOptions,...
'Observation',{'observation'});
agentOptions = rlSACAgentOptions;
agentOptions.SampleTime = Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.MiniBatchSize = 32;
agent = rlSACAgent(actor,[critic1 critic2],agentOptions);
getAction(agent,{rand(obsInfo(1).Dimension)});
maxepisodes = 10;
maxsteps = 2;
trainingOptions = rlTrainingOptions(...
'MaxEpisodes',maxepisodes,...
'MaxStepsPerEpisode',maxsteps,...
'StopOnError','on',...
'Verbose',true,...
'Plots','training-progress',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',Inf,...
'ScoreAveragingWindowLength',10);
trainingStats = train(agent,env,trainingOptions);
% Play the game with the trained agent
simOptions = rlSimulationOptions('MaxSteps',maxsteps);
experience = sim(env,agent,simOptions);
% Q値 Here I want to get the value of value of function,(Qvalue)
% Is the way correct?
batchobs = rand(2,1,64);
batchact = rand(1,1,64,1);
qvalue = getValue(critic2,{batchobs},{batchact});
%v = getValue(critic2,{rand(2,1)},{rand(1,1)})
%save("kyori30Agent.mat","States")
  2 comentarios
Martin Forsberg Lie
Martin Forsberg Lie el 8 de Nov. de 2021
Editada: Martin Forsberg Lie el 8 de Nov. de 2021
SAC is implemented with two critics, and you must choose the critic:
critic = getCritic(agent);
value = getValue(critic(1),{obs},action);
ryunosuke tazawa
ryunosuke tazawa el 19 de Nov. de 2021
'The function or variable'agent' is not recognized.'
critic = getCritic(agent);
value = getValue(critic(1),{obs},action);
I added these, but I got the above error.
Do you know how to fix it?

Iniciar sesión para comentar.

Respuestas (1)

Aneela
Aneela el 7 de Nov. de 2024
To obtain the Q-value using your trained Soft Actor-Critic (SAC) agent, you can use the "getValue" function. It is used to compute the "Q-value" for a given observation-action pair using the critic network.
Refer to the below code snippet for calculating the "Q-value":
% Assuming 64 as the Mini batch size
batchobs = rand(obsInfo.Dimension(1), 1, 64);
batchact = rand(actInfo.Dimension(1), 1, 64);
qvalue = getValue(critic2, {batchobs}, {batchact});
Refer to the following MathWorks documentation links for more information on calculating the "Q-value" and "getValue" functions respectively:

Categorías

Más información sobre Simulation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by