Feature selection / Dimensionality reduction for tall array

1 visualización (últimos 30 días)
Santiago Cepeda
Santiago Cepeda el 22 de Oct. de 2021
Comentada: Santiago Cepeda el 29 de Oct. de 2021
Hi everyone!
I work with a tall array of more than 2 M observations and about 3000 numerical predictor variables. My response variable is binary (no / yes). I would like to know how and what algorithms I can use to select (or rank) the best features to develop a predictive model.
Thanks.

Respuestas (1)

Kumar Pallav
Kumar Pallav el 29 de Oct. de 2021
Hi,
Please look at the various feature selection techniques available in Statistics and Machine Learning Toolbox. As an example, you can use fscmrmr function for classification problems. Alternatively, you can use pca to reduce the dimensionality of the feature space.
Hope this helps!
  3 comentarios
Kumar Pallav
Kumar Pallav el 29 de Oct. de 2021
Hi,
As an example shown here, if 'salary' is the response variable in the table 'adultdata',you could try the following command:
[idx,scores] = fscmrmr(adultdata,'salary')
Also,the data type supported for Tbl is 'table', so that may be the reason you are not able to run the syntax directly.
Santiago Cepeda
Santiago Cepeda el 29 de Oct. de 2021
I’m working with tall arrays so, how should I write the command?

Iniciar sesión para comentar.

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by