Plot the slope of a parabola with only the data points being known
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Deflection (in meters)
The deflection is given in the following line. The data was acquired experimentally.
Thus, no equation is available.
x = linspace(-0.5,0.5,25); %length in (meters)
def_3mm_no_grav = -[0.00 5.82e-1 1.08 1.53 1.94 2.30 2.62 2.89 3.12 3.29 3.41 3.49 3.51 3.49 3.41 3.29 3.12 2.89 2.62 2.30 1.94 1.53 1.08 5.82e-1 0.0]*(10^(-3));
Slope
I tried using polyfit, but I'm not that familiar with the function so I could be using it wrong
slope_3_no_grav = polyfit(x,def_3mm_no_grav,1)
How should I go about acquiring the values/ equation of the slope in order to plot it?
0 comentarios
Respuestas (3)
Alan Stevens
el 24 de Oct. de 2021
Like this?
x = linspace(-0.5,0.5,25); %length in (meters)
def_3mm_no_grav = -[0.00 5.82e-1 1.08 1.53 1.94 2.30 2.62 2.89 3.12 ...
3.29 3.41 3.49 3.51 3.49 3.41 3.29 3.12 2.89 2.62 2.30 1.94 1.53 ...
1.08 5.82e-1 0.0]*(10^(-3));
coeffs = polyfit(x,def_3mm_no_grav,2);
fit_3mm_no_grav = polyval(coeffs,x);
slope_coeffs = [2*coeffs(1) coeffs(2)];
slope_fit = polyval(slope_coeffs,x);
plot(x,def_3mm_no_grav,'o',x,fit_3mm_no_grav),grid
legend('data','curve fit')
xlabel('x'), ylabel('3mm no grav')
figure
plot(x,slope_fit),grid
xlabel('x'), ylabel('slope of 3mm no grav')
Ive J
el 24 de Oct. de 2021
Before fitting, it's a good practice to visualize your data to better understand the rough relationship between your variables. In your case, a 2nd order polynomial function seems a reasonable choice:
x = linspace(-0.5,0.5,25); %length in (meters)
y = -[0.00 5.82e-1 1.08 1.53 1.94 2.30 2.62 2.89 3.12 3.29 3.41 3.49 3.51 3.49 3.41 3.29 3.12 2.89 2.62 2.30 1.94 1.53 1.08 5.82e-1 0.0]*(10^(-3));
% fit a curve
coef = polyfit(x, y, 2); % equation would be f(x) = coef(1)*x^2 + coef(2)*x + coef(3)
% now draw the fit
newx = linspace(min(x), max(x), 100);
newy = polyval(coef, newx);
plot(x, y, 'o', newx, newy, 'linewidth', 1.5)
Sargondjani
el 24 de Oct. de 2021
clc;
clear all;
close all;
x = linspace(-0.5,0.5,25); %length in (meters)
def_3mm_no_grav = -[0.00 5.82e-1 1.08 1.53 1.94 2.30 2.62 2.89 3.12 3.29 3.41 3.49 3.51 3.49 3.41 3.29 3.12 2.89 2.62 2.30 1.94 1.53 1.08 5.82e-1 0.0]*(10^(-3));
pp=polyfit(x,def_3mm_no_grav,2);% fit polynomial
p_prime = polyder(pp);%take derivative of this polynomial
plot(x,def_3mm_no_grav,'LineWidth',1.5);%data
hold all;
x_acc = linspace(x(1),x(end),1000);
y_acc = polyval(pp,x_acc);
plot(x_acc,y_acc,'--','LineWidth',1.5);%fitted polynomial
%First order approximation around x1:
x1 = 0.1;
y1 = polyval(pp,x1);%function value;
slope_x1 = polyval(p_prime,x1);%slope at x1
x_dev = -0.1:0.01:0.1;
y_slope = y1+ slope_x1*x_dev;
plot(x1 + x_dev,y_slope,':','LineWidth',1.5)
legend('Data','Fitted poly.','First order approx.')
0 comentarios
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!