Stiff ode solvers failure

3 visualizaciones (últimos 30 días)
Mohammed
Mohammed el 17 de Oct. de 2014
Comentada: Mike Hosea el 18 de Oct. de 2014
I have a stiff system of nonlinear 1st order ODEs represents the equation of motion of a large dynamic system, can be expressed mathematically in the following form:
  • {r_dot}= [A] {F(r)}
{r_dot} and {F(r)} are vectors of size n. F is a function of the system states (r). A is a symmetric square matrix of size n*n, I have used all the stiff ode solvers (ode15s, ode23s, ……..) to solve for the system response for t=[0 200] seconds, however the execution stopped at t=22 seconds with warning:
Warning: Failure at t=2.204902e+001. Unable to meet integration tolerances without reducing
the step size below the smallest value allowed (5.684342e-014) at time t.
Is there any idea to fix this problem like modifying the ode options or mass matrix, Jacobin or any other suggestions?. Are there any implicit integration techniques can be used to solve this system either with a better computational stability?
  1 comentario
Mike Hosea
Mike Hosea el 18 de Oct. de 2014
I don't think the question can be answered in such generality. Are all the solvers giving up at about the same t value or are they just making it to various, quite different t values before failing?

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by