Distance from camera using sparse 3D reconstruction
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Luca
el 17 de Oct. de 2014
Respondida: Dima Lisin
el 24 de Oct. de 2014
So I am doing sparse 3D reconstruction using stereo camera system. So I stereo calibrated the left and right cameras using Caltech's toolbox. Then stereo rectification. Then feature detection and matching. So far it is similar to this example in MATLAB: http://www.mathworks.com/help/vision/examples/sparse-3-d-reconstruction-from-two-views.html
But since I do not have a checkerboard in the scene, I cannot find the extrinsic camera calibration matrix directly. So I had to estimate fundamental matrix, then essential matrix, then camera matrices and finally the 3D point cloud using triangulation.The whole process is similar to this: http://vgl-ait.org/cvwiki/doku.php?id=matlab:tutorial:3d_reconstruction_with_calibrated_image_sequences
Since I only used intrinsic camera calibration matrix, my point cloud is not in metric. It is in pixels.
Now my question is how can I convert this point cloud from pixels to metric?
0 comentarios
Respuesta aceptada
Dima Lisin
el 24 de Oct. de 2014
Hi Luca,
I would highly recommend you try the Stereo Camera Calibrator app in the Computer Vision System Toolbox. After you calibrate your cameras, you can use the triangulate function to do the sparse reconstruction.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Point Cloud Processing en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!