plot stream over two spheres
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Shreen El-Sapa
el 19 de Nov. de 2021
Comentada: Shreen El-Sapa
el 20 de Nov. de 2021
A =[ -4.7107
0.0012
-0.0056
0.0132
-0.0253
0.0435
-0.0689
0.1031
-0.1473
0.2040
-0.2737
0.3607
-0.4647
0.5927
-0.7425
0.9265
-1.1387
1.4014
-1.7014
2.0810
-2.5114
3.0805
-3.7224
4.6475
-5.6872
7.5039
-9.5388
16.4146
-25.4535
14.3236];
B=[ -3.3794
0.0005
-0.0009
0.0006
-0.0003
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
C=[ 6.8417
-0.0007
0.0007
-0.0003
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
D=[ -4.7100
-0.0012
0.0058
-0.0132
0.0253
-0.0435
0.0689
-0.1032
0.1473
-0.2040
0.2737
-0.3608
0.4648
-0.5928
0.7426
-0.9266
1.1388
-1.4016
1.7016
-2.0813
2.5118
-3.0810
3.7230
-4.6482
5.6881
-7.5050
9.5403
-16.4171
25.4574
-14.3258];
E=[ -3.3789
-0.0005
0.0009
-0.0006
0.0003
-0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
F=[ 6.8407
0.0007
-0.0008
0.0003
-0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000];
a = 1 ; %RADIUS
L=.1;
dd=4;
kappa=1;gam=0.3;arh=1; %a2=1;u2=1;beta1=beta2=1
al=kappa.*(2+kappa)./(gam.*(1+kappa));
alpha1=real(((al.^2+arh.^2)./2+((al.^2+arh.^2).^2-(2.*kappa.*arh.^2./gam).^(1./2))./2).^(1./2));
alpha2=real(((al.^2+arh.^2)./2-((al.^2+arh.^2).^2-(2.*kappa.*arh.^2./gam).^(1./2))./2).^(1./2));
c =-a/L;
b =a/L;
m =a*100; % NUMBER OF INTERVALS
[x,y]=meshgrid([c+dd:(b-c)/m:b],[c:(b-c)/m:b]);
[I, J]=find(sqrt(x.^2+y.^2)<(a-.1));
if ~isempty(I)
x(I,J) = 0; y(I,J) = 0;
end
r=sqrt(x.^2+y.^2);
t=atan2(y,x);
r2=sqrt(r.^2+dd.^2-2.*r.*dd.*cos(t));
zet=(r.^2-r2.^2-dd.^2)./(2.*r2.*dd);
%for i1=1:length(x);
% for k1=1:length(x);
% if sqrt(x(i1,k1).^2+y(i1,k1).^2)>1./L;
% r(i1,k1)=0;r2(i1,k1)=0;
% end
% end
%end
warning off
qr1=0;
for i=2:7
Ai=A(i-1);Bi=B(i-1);Ci=C(i-1);Di=D(i-1);Ei=E(i-1);Fi=F(i-1);
qr1=qr1-(Ai.*r.^(-i-1)+r.^(-3./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(-3./2).*besselk(i-1./2,r.*alpha2).*Ci).*legendreP(i-1,cos(t))-(Di.*r2.^(-i-1)+r2.^(-3./2).*besselk(i-1./2,r2.*alpha1).*Ei+r2.^(-3./2).*besselk(i-1./2,r2.*alpha2).*Fi).*legendreP(i-1,zet);
end
hold on
[DH1,h1]=contour(x,y,qr1,3,'-k');
%axis square;
title('$(a)$ $\ell=0.1,\;\alpha=1.0$','Interpreter','latex','FontSize',10,'FontName','Times New Roman','FontWeight','Normal')
%%%%%%%%%%%%%%%% $\frac{\textstyle a_1+a_2}{\textstyle h}=6.0,\;
hold on
t3 = linspace(0,2*pi,1000);
h2=0;
k2=0;
rr2=1;
x2 = rr2*cos(t3)+h2;
y2 = rr2*sin(t3)+k2;
set(plot(x2,y2,'-k'),'LineWidth',1.1);
fill(x2,y2,'w')
%axis square;
hold on
t2 = linspace(0,2*pi,1000);
h=dd;
k=0;
rr=2;
x1 = rr*cos(t2)+h;
y1 = rr*sin(t2)+k;
set(plot(x1,y1,'-k'),'LineWidth',1.1);
fill(x1,y1,'w')
%axis square;
axis off
1 comentario
Respuesta aceptada
Cris LaPierre
el 20 de Nov. de 2021
qr1 is all NaNs. Assuming the countours are supposed to be your streamlines, you should check your equation. I'm not sure your for loop is doing what you intended. At the least, there is an issue with your calculation.
5 comentarios
Cris LaPierre
el 20 de Nov. de 2021
Personally, I use the streamlines function to create streamlines, not contour. However, even with streamlines, you will need to calculate and input the vector field components u and v.
Más respuestas (0)
Ver también
Categorías
Más información sobre Legend en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!