Wrong solution of differential equation using symbolic lambda

6 visualizaciones (últimos 30 días)
As can be seen in the screenshot I have a problem with the symbol lambda in matlab R2021B. If lambda is used instead of the variable L, a wrong solution for the differential equation is obtained. What can be the cause for this problem? Many thanks in advance!
clear all
syms R(r) L
assume(L, "real")
assume(L > 0)
vgl = r*diff(R(r),2,r) + diff(R(r),1,r) == L*r*R(r)
dsolve(vgl)
clear all
syms R(r) lambda
assume(lambda, "real")
assume(lambda > 0)
vgl = r*diff(R(r),2,r) + diff(R(r),1,r) == lambda*r*R(r)
dsolve(vgl)
  3 comentarios
Kevin Oyen
Kevin Oyen el 23 de Nov. de 2021
Thanks for your answer. I'm sorry, it's the first time I post something here... The code is in there and it is in Matlab R2021B, cause I needed to fill it in to submit the question I thought you could see it also.
Paul
Paul el 23 de Nov. de 2021
I don't have an answer, but the result seems (strangely) to depend on the case (upper or lower) of the first character of the variable. Is there way you can check if the solutions are equivalent? I wasn't sure how to choose the Ci.
syms R(r) L
assume(L, "real")
assume(L > 0)
vgl = r*diff(R(r),2,r) + diff(R(r),1,r) == L*r*R(r);
dsolve(vgl)
ans = 
syms R(r) lambda
assume(lambda, "real")
assume(lambda > 0)
vgl = r*diff(R(r),2,r) + diff(R(r),1,r) == lambda*r*R(r);
dsolve(vgl)
ans = 
syms R(r) Lambda
assume(Lambda, "real")
assume(Lambda > 0)
vgl = r*diff(R(r),2,r) + diff(R(r),1,r) == Lambda*r*R(r);
dsolve(vgl)
ans = 
syms R(r) AAA
assume(AAA, "real")
assume(AAA > 0)
vgl = r*diff(R(r),2,r) + diff(R(r),1,r) == AAA*r*R(r);
dsolve(vgl)
ans = 
syms R(r) aAA
assume(aAA, "real")
assume(aAA > 0)
vgl = r*diff(R(r),2,r) + diff(R(r),1,r) == aAA*r*R(r);
dsolve(vgl)
ans = 

Iniciar sesión para comentar.

Respuesta aceptada

Srijith Kasaragod
Srijith Kasaragod el 30 de Nov. de 2021
Editada: Srijith Kasaragod el 2 de Dic. de 2021
Hi Kevin,
This is a bug and has been brought to the notice of our developers. It may be fixed in future releases. One possibility to resolve this problem would be to avoid solutions using the imaginary unit in representation, which in this case would prefer the representation using besseli and besselk functions.
Regards,
Srijith.
  1 comentario
Paul
Paul el 30 de Nov. de 2021
Can you better describe what the bug actually is? What is the title and description of the bug? Is there a link to a bug report?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by