Out of memory on device. To view more detail about available memory on the GPU, use 'gpuDevice()'. If the problem persists, reset the GPU by calling 'gpuDevice(1)
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I want to train the model in .mat dataset but i am getting the memory error my dataset size is [256,340,2] when i try
gpuDevice(1)
ans =
CUDADevice with properties:
Name: 'NVIDIA GeForce GTX 1080 Ti'
Index: 1
ComputeCapability: '6.1'
SupportsDouble: 1
DriverVersion: 11.4000
ToolkitVersion: 11
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 1.1811e+10
AvailableMemory: 1.0615e+10
MultiprocessorCount: 28
ClockRateKHz: 1620000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceAvailable: 1
DeviceSelected: 1
code is
location = 'D:\data-11\sir task\dataset\';
imds = imageDatastore(location, 'FileExtensions', '.mat', 'IncludeSubfolders',1, ...
'LabelSource','foldernames',...
'ReadFcn',@matReader);
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7, 'randomized');
net = lgraph_1;
inputSize = lgraph_1.Layers(1).InputSize;
[learnableLayer,classLayer] = findLayersToReplace(lgraph_1);
[learnableLayer,classLayer]
numClasses = numel(categories(imdsTrain.Labels));
if isa(learnableLayer,'nnet.cnn.layer.FullyConnectedLayer')
newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
elseif isa(learnableLayer,'nnet.cnn.layer.Convolution2DLayer')
newLearnableLayer = convolution2dLayer(1,numClasses, ...
'Name','new_conv', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
end
lgraph_1 = replaceLayer(lgraph_1,learnableLayer.Name,newLearnableLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph_1 = replaceLayer(lgraph_1,classLayer.Name,newClassLayer);
miniBatchSize = 128;
valFrequency = floor(numel(imdsTrain.Files)/miniBatchSize);
checkpointPath = pwd;
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',100, ...
'InitialLearnRate',1e-3, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',valFrequency, ...
'Verbose',false, ...
'Plots','training-progress', ...
'CheckpointPath',checkpointPath);
net = trainNetwork(imdsTrain,lgraph_1,options);
I have also tried to change the batch size to 8 but it does't work.
0 comentarios
Respuestas (1)
yanqi liu
el 25 de Nov. de 2021
sir,may be use
miniBatchSize = 128;
to
miniBatchSize = 1;
4 comentarios
Ver también
Categorías
Más información sobre Parallel and Cloud en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!