- Simulate the system using your nonlinear function to generate input-output data.
- Train an RBF network on this data: "newrb" function can help, refer to below example code.
- Test the RBF network and compare its output to the true function.
How to use RBF training to simulate this function, (simulation and using code seperatly)
13 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
f = @(x)(prod([x(1),x(2),x(3),x(5),x(3)-1])+x(4)) ./ (1 + x(2)^2 + x(3)^3);
k = 5; % demo value y = 1:5; % demo value u = 1:5; % demo value
y(k+1) = f([y(k), y(k-1), y(k-2), u(k), u(k-1)])
0 comentarios
Respuestas (1)
Leepakshi
el 2 de Sept. de 2025
Editada: Leepakshi
el 2 de Sept. de 2025
Hi Jabbar,
You can simulate this function using Radial Basis Function Training using below three steps:
Refer to this code for better understanding:
f = @(x)(prod([x(1),x(2),x(3),x(5),x(3)-1])+x(4)) ./ (1 + x(2)^2 + x(3)^3);
N = 200; % .... Generate data using loop and randn, if not available.
X = [y(3:N+2)', y(2:N+1)', y(1:N)', u(3:N+2)', u(2:N+1)']; % Prepare inputs (X) and targets (T)
T = y(4:N+3)';
net = newrb(X', T', 1e-3, 1.0, 50); % Train RBF network
Hope this helps!
Thanks
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!