How to write this script in complex conjugate, it should have real and imaginary values

5 visualizaciones (últimos 30 días)
Results should have real and imaginary part in the form of (a+bi)
% Initilization
r1source = zeros(length(y),length(x),length(z)) ;
r2source = zeros(length(y),length(x),length(z)) ;
r3source = zeros(length(y),length(x),length(z)) ;
for m=1:length(y)
for n=1:length(x)
for o=1:length(z)
r1source(m,n,o)=sqrt((x(n)-x1)^2+(y(m)-y1)^2+(z(o)-z1)^2);
r2source(m,n,o)=sqrt((x(n)-x2)^2+(y(m)-y2)^2+(z(o)-z2)^2);
r3source(m,n,o)=sqrt((x(n)-x3)^2+(y(m)-y3)^2+(z(o)-z3)^2);
end
end
end
  4 comentarios
Adam Danz
Adam Danz el 28 de Nov. de 2021
How do the a/b/c values map to the values in the last line?
Walter Roberson
Walter Roberson el 28 de Nov. de 2021
r1source(m,n,o)=sqrt((x(n)-x1)^2+(y(m)-y1)^2+(z(o)-z1)^2);
if x and x1 and y and y1 and z and z1 are all real-valued, then (x(n)-x1) and (y(m)-y1) and (z(o)-z1) will be real-valued, and the square of a real quantity is never negative, so the sum of squares would never be negative, so r1source would never be complex-valued.
For r1source to be complex-valued, at least one of the quantities would have to be complex-valued. If some of the quantities are real-valued but others are purely imaginary, then although the squares of the purely imaginary components would be negative, they might not be negative enough to balance the other parts, so you could end up with sqrt() of a positive number.

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 28 de Nov. de 2021
r1source = sqrt( (reshape(y,[],1)-y1).^2) + (reshape(x,1,[])-x1).^2 + (reshape(z,1,1,[])-z1).^2 );

Más respuestas (0)

Categorías

Más información sobre Image Filtering and Enhancement en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by