Help with badly working loop

4 views (last 30 days)
Lavorizia Vaughn
Lavorizia Vaughn on 2 Dec 2021
Hi, hello everyone, I've been working on a method that implements the Backwartd Euler method with the Newton method, amd I have the following code:
function [t,w] = backeuler(f, dfdy, a, b, alpha, N, maxiter, tol)
h = (b-a)/N;
t = a:h:b;
w = t*0;
w(1) = alpha;
converged = false;
for i = 1:N
w0=w(i);
wj=w0;
for j=1:maxiter
wj=wj-(wj - w0 - h*f(t(i+1),wj)) / (1 - h*dfdy(t(i+1),wj));
error=(wj - w0 - h*f(t(i+1),wj)) / (1 - h*dfdy(t(i+1),wj));
fprintf('%d %g\n', j, abs(error));
if abs(error)<=tol
converged = true;
break;
end
end
if converged; break; end
end
fprintf('\n');
if ~converged
error('No Newton convergence.');
end
Now, when I terminate:
f = @(t,y) y^2 * (1-y);
dfdy = @(t,y) 2*y - 3*y^2;
a = 0; b = 2000; alpha = 0.9; maxiter = 20; tol = 1e-12;
[t3,w3] = backeuler(f, dfdy, a, b, alpha, 1, maxiter, tol);
[t4,w4] = backeuler(f, dfdy, a, b, alpha, 5, maxiter, tol);
[t5,w5] = backeuler(f, dfdy, a, b, alpha, 10, maxiter, tol);
I've been getting:
%1st solution
1 0.0270214
2 0.00149354
3 4.46627e-06
4 3.98803e-11
5 7.88716e-18
%2nd solution
1 0.0268375
2 0.00147092
3 4.32538e-06
4 3.7348e-11
5 4.40305e-17
%3rd soltuion
1 0.0266097
2 0.00144316
3 4.15576e-06
4 3.44115e-11
5 1.74336e-17
Which are the three solutions for the givens. But I should be getting more solutions, for example, I only have one solution for [t4,w4] = backeuler(f, dfdy, a, b, alpha, 5, maxiter, tol), but I should have four.
%1st solution for [t3,w3] = backeuler(f, dfdy, a, b, alpha, 1, maxiter, tol);
1 0.128469
2 0.0270214
3 0.00149354
4 4.46627e-006
5 3.98803e-011
6 7.88716e-018
%2nd(1) solution for [t4,w4] = backeuler(f, dfdy, a, b, alpha, 5, maxiter, tol);
1 0.128063
2 0.0268375
3 0.00147092
4 4.32538e-006
5 3.7348e-011
6 4.40305e-017
%2nd(2) soution for [t4,w4] = backeuler(f, dfdy, a, b, alpha, 5, maxiter, tol);
1 0.000249002
2 1.23664e-007
3 3.05022e-014
%2nd(3) solution for [t4,w4] = backeuler(f, dfdy, a, b, alpha, 5, maxiter, tol);
1 6.20646e-007
2 7.68531e-013
%2nd(4) solution for [t4,w4] = backeuler(f, dfdy, a, b, alpha, 5, maxiter, tol);
1 1.54774e-009
2 1.16283e-017
%2nd soltuoin(5)
1 3.8597e-012
2 9.69023e-018
Any help would be appreciated.
  14 Comments
Lavorizia Vaughn
Lavorizia Vaughn on 4 Dec 2021
Dude, that totally worked. You're a godsend, thank you so very much.

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by