How can I solve an Optimization problem?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hello. I have not used the optimization toolbox and I need your help. I have 3 functions that depends on λ, and an function μ that depends on the 3 previous functions (so μ also depends on λ). I need to find the minimum value of μ changing λ: how can I make it? what function should I consider? Thanks in advance.
syms lambda;
c= sqrt((-(d^2)*(cosd(psi)-1))/(1+cosd(fi-psi)+(lambda^2)*(1-cosd(fi-psi))));
a= lambda*c;
b= sqrt(((d^2)*(lambda^2)*(cosd(fi)-1)-1-cosd(fi))/((lambda^2)*(cosd(fi-psi)-1)-1-cosd(fi-psi)));
Mu_1= acosd(abs(((c^2)+(b^2)-((d-a)^2))/(2*b*c)));
2 comentarios
Abolfazl Chaman Motlagh
el 13 de Dic. de 2021
Editada: Abolfazl Chaman Motlagh
el 13 de Dic. de 2021
does lambda has any bound ? like an interval? because acosd hence Mu_1 become imaginary in larg numbers.
can you provide simple value for d ?
Respuestas (2)
Abolfazl Chaman Motlagh
el 13 de Dic. de 2021
you can use fmincon, this function minimize function in a constraint problem. but only constraint here is bounds of lambda. so other fields of function are empty ([]).
i use some sample number for needed variables.
d = 1;
psi = rand * 360;
fi = rand * 360;
c=@(lambda) (sqrt((-(d^2)*(cosd(psi)-1))/(1+cosd(fi-psi)+(lambda^2)*(1-cosd(fi-psi)))));
a=@(lambda) (lambda*c(lambda));
b=@(lambda) (sqrt(((d^2)*(lambda^2)*(cosd(fi)-1)-1-cosd(fi))/((lambda^2)*(cosd(fi-psi)-1)-1-cosd(fi-psi))));
Mu_1=@(lambda) (acosd(abs(((c(lambda)^2)+(b(lambda)^2)-((d-a(lambda))^2))/(2*b(lambda)*c(lambda)))));
[Lambda_star,fval,exitflag,output]=fmincon(@(x) Mu_1(x),1,[],[],[],[],0,1);
disp(Lambda_star)
use fmincon documentation if you need more options for better convergence.it seems it reach best answer in my case : (in my code the answer changes everytime because psi and fi are random)
x = 0:1e-3:1;
for i=1:numel(x)
y(i) = Mu_1(x(i));
end
plot(x,y)
3 comentarios
Abolfazl Chaman Motlagh
el 13 de Dic. de 2021
Yes it is. but are you sure you wrote the equations right? because it seems it is not what you're saying. lets plot the function over lambda:
d = 100;
psi = 30;
fi = 170;
c=@(lambda) (sqrt((-(d^2)*(cosd(psi)-1))/(1+cosd(fi-psi)+(lambda^2)*(1-cosd(fi-psi)))));
a=@(lambda) (lambda*c(lambda));
b=@(lambda) (sqrt(((d^2)*(lambda^2)*(cosd(fi)-1)-1-cosd(fi))/((lambda^2)*(cosd(fi-psi)-1)-1-cosd(fi-psi))));
Mu_1=@(lambda) (acosd(abs(((c(lambda)^2)+(b(lambda)^2)-((d-a(lambda))^2))/(2*b(lambda)*c(lambda)))));
x = 0:1e-5:1;
for i=1:numel(x)
y(i) = Mu_1(x(i));
end
plot(x,y)
Juan Barrientos
el 13 de Dic. de 2021
3 comentarios
Torsten
el 14 de Dic. de 2021
Be careful with the objective function if the expression inside acosd becomes greater than 1. fminsearch will most probably stop if complex numbers are encountered during the optimization.
Ver también
Categorías
Más información sobre Get Started with Optimization Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!