Numerically solving a pair of coupled second order ODES with odeToVectorField
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hollis Williams
el 14 de Dic. de 2021
Comentada: Nikhil Kapoor
el 16 de Abr. de 2022
I am attempting to use some of the functions in MATLAB to numerically solve a pair of coupled second order ODEs of the form
\ddot{x} = f(x,y,\dot{x},\dot{y})
\ddot{y} = f(x,y,\dot{x},\dot{y}).
I am able to get it to work with just one second-order ODE, but the code I am trying to does not work for a pair of ODEs.
The function odeToVectorField effectively takes a second order ODE and writes it as a vector for a pair of coupled first order ODEs. ode45 is the usual Runge-Kutta solution method. xInit and yInit correspond to the initial conditions for x and y and the aim is then to plot both x and y against time and also x against y over time.
gamma1=0.1;
gamma2=0.1;
a=1;
m=1;
g=9.8;
d=1;
syms x(t) y(t)
eqn1=diff(x,2)== (gamma1*diff(x))/(a + m*d^2 + (m/2)*d^2*cos(y-x)) + (gamma2*diff(y))/(a+ (m/2)*cos(y-x)) - ( (m/2)*d^2*sin(y-x)*(diff(x)^2 - diff(y)^2))/(a + m*d^2 + (m/2)*d^2*cos(y-x)) - ((m/2)*d^2*diff(x)^2*(y-x))/(a+ (m/2)*cos(y-x)) - ((m/2)*d*(3*g*sin(x) + g*sin(y)))/(a + m*d^2 + (m/2)*d^2*cos(y-x)) - ((m/2)*d*g*sin(y))/(a+ (m/2)*cos(y-x))
eqn2=diff(y,2)== (gamma1*diff(x))/((m/2)*d^2*cos(y-x)) + (gamma2*diff(y))/a - ( (m/2)*d^2*sin(y-x)*(diff(x)^2 - diff(y)^2))/((m/2)*d^2*cos(y-x)) - ((m/2)*d^2*diff(x)^2*(y-x))/a - ((m/2)*d*(3*g*sin(x) + g*sin(y)))/((m/2)*d^2*cos(y-x)) - ((m/2)*d*g*sin(y))/a
V = odeToVectorField(eqn1,eqn2)
M = matlabFunction(V,'vars',{'t','Y'})
interval = [0 20];
xInit = [2 0];
yInit = [2 0];
ySol = ode45(M,interval,xInit, yInit);
tValues = linspace(0,20,100);
yValues = deval(ySol,tValues,1);
plot(tValues,yValues)
0 comentarios
Respuesta aceptada
Star Strider
el 14 de Dic. de 2021
‘... the code I am trying to does not work for a pair of ODEs.’
Yes, it does. Look at the ‘Subs’ result from odeToVectorField to see that everything is there.
The problem that remains is that this is now a degree system so ‘xInit, yInit’ need to be concatenated with square brackets for it to work —
gamma1=0.1;
gamma2=0.1;
a=1;
m=1;
g=9.8;
d=1;
sympref('AbbreviateOutput',false);
syms x(t) y(t)
eqn1=diff(x,2)== (gamma1*diff(x))/(a + m*d^2 + (m/2)*d^2*cos(y-x)) + (gamma2*diff(y))/(a+ (m/2)*cos(y-x)) - ( (m/2)*d^2*sin(y-x)*(diff(x)^2 - diff(y)^2))/(a + m*d^2 + (m/2)*d^2*cos(y-x)) - ((m/2)*d^2*diff(x)^2*(y-x))/(a+ (m/2)*cos(y-x)) - ((m/2)*d*(3*g*sin(x) + g*sin(y)))/(a + m*d^2 + (m/2)*d^2*cos(y-x)) - ((m/2)*d*g*sin(y))/(a+ (m/2)*cos(y-x))
eqn2=diff(y,2)== (gamma1*diff(x))/((m/2)*d^2*cos(y-x)) + (gamma2*diff(y))/a - ( (m/2)*d^2*sin(y-x)*(diff(x)^2 - diff(y)^2))/((m/2)*d^2*cos(y-x)) - ((m/2)*d^2*diff(x)^2*(y-x))/a - ((m/2)*d*(3*g*sin(x) + g*sin(y)))/((m/2)*d^2*cos(y-x)) - ((m/2)*d*g*sin(y))/a
[V,Subs] = odeToVectorField(eqn1,eqn2)
M = matlabFunction(V,'vars',{'t','Y'})
interval = [0 20];
xInit = [2 0];
yInit = [2 0];
ySol = ode45(M,interval,[xInit, yInit]);
figure
plot(ySol.x, ySol.y)
grid
legend(string(Subs), 'Location','best')
tValues = linspace(0,20,100);
yValues = deval(ySol,tValues,1);
plot(tValues,yValues)
There are still problems, however the code essentially works.
.
1 comentario
Más respuestas (0)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!