Need help with plot

1 visualización (últimos 30 días)
Peter Denardo
Peter Denardo el 17 de Dic. de 2021
Comentada: Peter Denardo el 17 de Dic. de 2021
Having trouble figuring out how to plot my 3 trajectories on a graph for the below program. Your help is appreciated. Thank you.
% All distances and heights measured in meters, time in seconds, velocity in m/s, angles in degrees and
%%acceleration in m/s^2
clear all
clc
H0 = 8;
return_height_tolerance = .001;
theta_0=26;
g=9.81;
dAC=16;
eR=.94 ;
H3=0;
v0=1;
err = 5;
counter=1;
while err>0.008
%Iteration Control
v0 = v0 + .001;
counter=counter+1;
%initial velocities in both directions
v0x=v0*cosd(theta_0); %Trig
v0y=v0*sind(theta_0); %Trig
%Point B = Maximmum height along trajectory path 1
H1=H0+v0y^2/(2*g);
%trajectory path 1
H2=H0+dAC*tand(theta_0)-g/(2*v0x^2)*dAC^2;
%velocities in x and y direction at max height
v1x=v0x; %Zero Acceleration
v1y=(sqrt(v0y^2-2*g*(H1-H0)));
%velocity just prior to hitting wall
v2x=v1x;
v2y=sqrt(v1y^2+2*g*((H0+H1)-(H0+H2)));
v2=sqrt(v2x^2+v2y^2);
%NEW NEW
%H2 = H1 - v2y^2/(2*g);
%velocity just after hitting the wall
v3x=v2x*eR;
v3y=v2y;
v3=sqrt(v3x^2+v3y^2);
theta_3_ref=atand(v3y/v3x); % Trig: Reference Triangle
theta_3_abs=theta_3_ref+180; % Absolute Angle (Quadrant "3")
%velocity just prior to hitting ground
v4x=v3x;
v4y=(sqrt(v3y^2-2*g*(H3-H2)));
v4=sqrt(v4x^2+v4y^2);
theta_4_ref=atand(v4x/v4y);
theta_4_abs=theta_4_ref+180;
%Distance between wall and ground
A=(-g/(2*v3x^2));
B=tand(theta_3_abs);
C=(1/(2*g)*(v4^2-v3^2));
%Quadratic formula for distance between wall and ground
%%based on energy Conservation 2-3 022& Trajectory Eq. 2-3 equations
dCD=(-B+sqrt(B^2-4*A*C))/(2*A);
%trajectory path 2
H3=H2+dCD*tand(theta_3_abs)-g/(2*v4x^2)*dCD^2;
%velocity just after hitting the ground
v5x=v4x;
v5y=v4y*eR;
v5=sqrt(v5x^2+v5y^2);
theta_5_ref=atand(v5x/v5y);
theta_5_abs=theta_4_ref+90;
%distance between ground and return height
dDA=-dAC-dCD;
%trajectory path 3
H4=H3+dDA*tand(theta_5_abs)-g/(2*v5^2)*dDA^2;
%Flight time between point A & B
time_AB=(H1-v0)/-g;
%Flight time between point A & C
time_AC=dAC/v0;
%Flight time between point C & D
time_CD=abs(dCD/v4);
%Flight time between point D & return height
time_D_return=abs(dDA/v5);
%Update Error
err = abs(H4-H0);
%H2=H0+dAC*tand(theta_0)-g/(2*v0x^2)*dAC^2;
%H3=H2+dCD*tand(theta_3_abs)-(g/(2*v3^2*(cosd(theta_3_abs))^2))*dCD^2;
%H4=H3+dDA*tand(theta_5_abs)-(g/(2*v4^2*(cosd(theta_5_abs)^2)))*dDA^2;
end
v0
v0y
v0x
v1y
v1x
v2
v2y
v4
dCD
dDA
H1
H2
H3
H4
time_AB
time_AC
time_CD
time_D_return
counter
  2 comentarios
KSSV
KSSV el 17 de Dic. de 2021
What variables you want to plot?
Peter Denardo
Peter Denardo el 17 de Dic. de 2021
I want to plot these 3 trajectories. I solved for the time on each of the trajectories so I am wondering if there is a similar method to plot them over a time to make it neater. H2, H3, and H4 are basically the final y cooridnate.
%H2=H0+dAC*tand(theta_0)-g/(2*v0x^2)*dAC^2;
%H3=H2+dCD*tand(theta_3_abs)-(g/(2*v3^2*(cosd(theta_3_abs))^2))*dCD^2;
%H4=H3+dDA*tand(theta_5_abs)-(g/(2*v4^2*(cosd(theta_5_abs)^2)))*dDA^2;

Iniciar sesión para comentar.

Respuesta aceptada

KSSV
KSSV el 17 de Dic. de 2021
You can store the variables in while loop using:
iwant = zeros([],1) ;
counter=1;
while err>0.008
counter = counter+1 ;
% do alculation for iwant/ update iwant
iwant(counter) = val ;
end
% iwant is an array you can plot here

Más respuestas (0)

Categorías

Más información sobre Fractals en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by