- Confidence intervals of coefficient estimates of linear regression model - https://www.mathworks.com/help/stats/linearmodel.coefci.html
- Compute deep learning network output for inference - https://www.mathworks.com/help/deeplearning/ref/dlnetwork.predict.html
- Regression loss for linear regression models - https://www.mathworks.com/help/stats/regressionlinear.loss.html
- Receiver operating characteristic (ROC) curve or other performance curve for classifier output - https://www.mathworks.com/help/stats/perfcurve.html
Summary table of machine learning model
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I am training some models of ML using Matlab to predict output.After I trained and tested the models ,I want to know the summary table for all models (slope,intercept,Brier scores,Auc),which function can I use to see the summary of trained models? Thanks
0 comentarios
Respuestas (1)
Himanshu
el 16 de Mayo de 2025
Hello,
To create a summary table of metrics (slope, intercept, Brier score, AUC) for multiple trained models in MATLAB, you can manually extract these values using model-specific properties and evaluation functions.
In MATLAB, you can construct it by combining outputs from functions like "coefCI" (for linear models), "predict", "loss", and "perfcurve" (for AUC).
Please refer to the attached documentations for more information.
I hope this helps.
0 comentarios
Ver también
Categorías
Más información sobre ROC - AUC en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!