Problems on bvp4c solver because of its initial guess and a singular jacobian?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hello, I have inputted what I can into the solver but I am missing the initial guess (I do not know how to do the initial guess so I just plugged in random values). I am not sure how this works and I can't seem to find examples on how I can find an initial guess.
I tried running it with the random initial guess but got this error in return:
"Unable to solve the collocation equations -- a singular Jacobian encountered."
The code below is an optimal control problem for the minimum time and there are 7 states and 7 co states equations. With this, I am hoping to find the control input and plot its time history.
Would gladly appreciate if someone is able to help me with this :)
ffunction mintime
b = 10.2
c = 1.74
S = 17.1
initial_mass = 1248.5
Ix = 1421
Iy = 4067.5
Iz = 4786
Ixz = 200
rho = 1.225
speedsound = 340.26
g = 9.81
csfc = 200/60/60/1000
epsilon = 0
solinit = bvpinit(linspace(0,1),[0.04;25;0;0.05;1240;88;100;1;2;3;4;5;6;7],7); %%%
sol = bvp4c(@ode, @bc, solinit);
y = sol.y;
time = sol.parameters*sol.x;
%%% ut = -y(4,:);
u_ele_oc = -(320000000*y(5,:)*((672842079*y(10,:)*y(2,:)^2)/162700000000 + (594909*y(8,:)*y(2,:))/(160000*y(5,:)) + (8379*y(9,:)*y(2,:)^2*((11431*y(1,:))/50000 + (117363*y(3,:))/(1000000*y(2,:))))/(800*y(5,:))))/(42238539*y(9,:)*y(2,:)^2)
figure(1);
plot(time,y([1 2 3 4 5 6 7],:)','-'); hold on; %%% 1 2 3 4 5 6 7
plot(time, ut, 'k:');
legend('X1 (alpha)', 'X2 (u)', 'X3 (q)', 'X4 (theta)', 'X5 (mass)', 'X6 (altitude)','X7 (horizontal)', 'Elevator(t)')
xlabel('time');
ylabel('states');
title('Numerical solution');
hold off;
% -------------------------------------------------------------------------
% ODE's of augmented states --> states and costates
% hamiltonian: J = 1 for min time
% y(1)-(7) is for the states --> y(1)-(7) = dH/dlambda
% y(8)-(14) is for the lambda that multiplies into the hamiltonian --> y(8)-(14) = dH/dy
function dydt = ode(t,y,T)
epsilon = 0
dydt = T*[y(3) + (981*cos(y(1) - y(4)))/(100*y(2)) + (9476649*y(10)*y(2))/(81350000*y(9)) + (8379*y(8))/(80*y(9)*y(5)) - ((8379*y(2)^2*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)))/800 + sin(epsilon + y(1))*((10000*y(2))/17013 + (3*y(6)*((100*y(2))/17013 - 11))/1000 + 1400))/(y(2)*y(5)) + (8379*y(9)*y(2)^2*((10*((161*y(1))/500 + (1653*y(3))/(10000*y(2)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)))/(y(9)*y(2)) + ((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2))/(2*y(9)*y(2))))/(800*y(5));
(981*sin(y(1) - y(4)))/100 + (cos(epsilon + y(1))*((10000*y(2))/17013 + (3*y(6)*((100*y(2))/17013 - 11))/1000 + 1400) - (8379*y(2)^2*(((161*y(1))/500 + (1653*y(3))/(10000*y(2)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2))*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)) + 3/100))/800)/y(5) + (728973*y(10)*y(2)^2*((5200*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(71*y(9)) - (4160000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)^2*y(2)^2)))/162700000 + (8379*y(9)*y(2)^2*(((100*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(71*y(9)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)^2*y(2)^2))*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)) + ((2000*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(71*y(9)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)^2*y(2)^2))*((161*y(1))/500 + (1653*y(3))/(10000*y(2)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2))))/(800*y(5)) + (8379*y(8)*y(2)*((2000*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(71*y(9)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)^2*y(2)^2)))/(800*y(5));
(9476649*y(8)*y(2))/(81350000*y(9)) - (728973*y(2)^2*((683*y(1))/1000 + (21663*y(3))/(2500*y(2)) - (4160000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2) - 1/20))/162700000 + (10718090019*y(10)*y(2)^2*y(5))/(82722781250000*y(9)) + (8379*y(9)*y(2)^2*((2262*y(5)*((161*y(1))/500 + (1653*y(3))/(10000*y(2)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)))/(203375*y(9)) + (1131*y(5)*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)))/(2033750*y(9))))/(800*y(5));
y(3);
- (5*y(2))/153117 - (y(6)*((100*y(2))/17013 - 11))/6000000 - 7/90;
-y(2)*sin(y(1) - y(4));
y(2)*cos(y(1) - y(4));
y(8)*((981*sin(y(1) - y(4)))/(100*y(2)) + (cos(epsilon + y(1))*((10000*y(2))/17013 + (3*y(6)*((100*y(2))/17013 - 11))/1000 + 1400))/(y(2)*y(5))) - (11708035353*y(10)*y(2)^2)/162700000000 - y(9)*((981*cos(y(1) - y(4)))/100 - (sin(epsilon + y(1))*((10000*y(2))/17013 + (3*y(6)*((100*y(2))/17013 - 11))/1000 + 1400))/y(5)) + y(13)*y(2)*cos(y(1) - y(4)) + y(14)*y(2)*sin(y(1) - y(4));
y(12)*(y(6)/1020780000 + 5/153117) + y(8)*((981*cos(y(1) - y(4)))/(100*y(2)^2) + (sin(epsilon + y(1))*(y(6)/56710 + 10000/17013) - (8379*y(2)^2*((1653*y(3))/(500*y(2)^2) - (3200000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^3) + (1600000*y(5)*((672842079*y(10)*y(2))/81350000000 + (594909*y(8))/(160000*y(5)) - (983384577*y(9)*y(3))/(800000000*y(5)) + (8379*y(9)*y(2)*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(400*y(5))))/(594909*y(9)*y(2)^2)))/800 + (8379*y(2)*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)))/400)/(y(2)*y(5)) - ((8379*y(2)^2*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)))/800 + sin(epsilon + y(1))*((10000*y(2))/17013 + (3*y(6)*((100*y(2))/17013 - 11))/1000 + 1400))/(y(2)^2*y(5))) - y(14)*cos(y(1) - y(4)) + y(13)*sin(y(1) - y(4)) - (728973*y(10)*y(2)^2*((21663*y(3))/(2500*y(2)^2) - (8320000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^3) + (4160000*y(5)*((672842079*y(10)*y(2))/81350000000 + (594909*y(8))/(160000*y(5)) - (983384577*y(9)*y(3))/(800000000*y(5)) + (8379*y(9)*y(2)*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(400*y(5))))/(594909*y(9)*y(2)^2)))/162700000 + (728973*y(10)*y(2)*((683*y(1))/1000 + (21663*y(3))/(2500*y(2)) - (4160000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2) - 1/20))/81350000 - (y(9)*((8379*y(2)^2*(((1653*y(3))/(10000*y(2)^2) - (160000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^3) + (80000*y(5)*((672842079*y(10)*y(2))/81350000000 + (594909*y(8))/(160000*y(5)) - (983384577*y(9)*y(3))/(800000000*y(5)) + (8379*y(9)*y(2)*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(400*y(5))))/(594909*y(9)*y(2)^2))*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)) + ((1653*y(3))/(500*y(2)^2) - (3200000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^3) + (1600000*y(5)*((672842079*y(10)*y(2))/81350000000 + (594909*y(8))/(160000*y(5)) - (983384577*y(9)*y(3))/(800000000*y(5)) + (8379*y(9)*y(2)*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(400*y(5))))/(594909*y(9)*y(2)^2))*((161*y(1))/500 + (1653*y(3))/(10000*y(2)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2))))/800 + cos(epsilon + y(1))*(y(6)/56710 + 10000/17013) - (8379*y(2)*(((161*y(1))/500 + (1653*y(3))/(10000*y(2)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2))*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)) + 3/100))/400))/y(5);
(63420651*y(10)*y(2))/203375000000 - y(11) - y(8);
(981*y(9)*cos(y(1) - y(4)))/100 - y(13)*y(2)*cos(y(1) - y(4)) - y(14)*y(2)*sin(y(1) - y(4)) - (981*y(8)*sin(y(1) - y(4)))/(100*y(2));
y(9)*((cos(epsilon + y(1))*((10000*y(2))/17013 + (3*y(6)*((100*y(2))/17013 - 11))/1000 + 1400) - (8379*y(2)^2*(((161*y(1))/500 + (1653*y(3))/(10000*y(2)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2))*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)) + 3/100))/800)/y(5)^2 - (8379*y(2)^2*(((80000*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2) - (80000*y(5)*((594909*y(8)*y(2))/(160000*y(5)^2) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5)^2)))/(594909*y(9)*y(2)^2))*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)) + ((1600000*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2) - (1600000*y(5)*((594909*y(8)*y(2))/(160000*y(5)^2) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5)^2)))/(594909*y(9)*y(2)^2))*((161*y(1))/500 + (1653*y(3))/(10000*y(2)) - (80000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2))))/(800*y(5))) - y(8)*(((8379*y(2)^2*((161*y(1))/25 + (1653*y(3))/(500*y(2)) - (1600000*y(5)*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2)))/800 + sin(epsilon + y(1))*((10000*y(2))/17013 + (3*y(6)*((100*y(2))/17013 - 11))/1000 + 1400))/(y(2)*y(5)^2) + (8379*y(2)*((1600000*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2) - (1600000*y(5)*((594909*y(8)*y(2))/(160000*y(5)^2) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5)^2)))/(594909*y(9)*y(2)^2)))/(800*y(5))) - (728973*y(10)*y(2)^2*((4160000*((672842079*y(10)*y(2)^2)/162700000000 + (594909*y(8)*y(2))/(160000*y(5)) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5))))/(594909*y(9)*y(2)^2) - (4160000*y(5)*((594909*y(8)*y(2))/(160000*y(5)^2) + (8379*y(9)*y(2)^2*((11431*y(1))/50000 + (117363*y(3))/(1000000*y(2))))/(800*y(5)^2)))/(594909*y(9)*y(2)^2)))/162700000;
y(12)*(y(2)/1020780000 - 11/6000000) - (y(9)*cos(epsilon + y(1))*(y(2)/56710 - 33/1000))/y(5) + (y(8)*sin(epsilon + y(1))*(y(2)/56710 - 33/1000))/(y(2)*y(5));
0];
% -------------------------------------------------------------------------
% boundary conditions: For this example, I just took one point from the
% flight envelope to test.
% ya(1)-(7) at t=0
% yb(1)-(7) at t=tf
% For those with free states, lambda(tf) = dS/Dy but because S for now = 0
% The last one is for H(tf) = 0
function res = bc(ya,yb,T)
epsilon = 0
res = [ ya(1) - 0.043891433584247;
ya(2) - 63.291751932577750;
ya(3);
ya(4) - 0.043891433584247;
ya(5) - 1248.5;
ya(6);
ya(7);
yb(1) - 0.315320021418749;
yb(2) - 24.042387774762076;
yb(3);
yb(4) - 0.315320021418749;
yb(12);
yb(6) - 88.638161212179780;
yb(14);
yb(11)*yb(3) - yb(12)*((5*yb(2))/153117 + (yb(6)*((100*yb(2))/17013 - 11))/6000000 + 7/90) + yb(9)*((981*sin(yb(1) - yb(4)))/100 + (cos(epsilon + yb(1))*((10000*yb(2))/17013 + (3*yb(6)*((100*yb(2))/17013 - 11))/1000 + 1400) - (8379*yb(2)^2*(((161*yb(1))/500 + (1653*yb(3))/(10000*yb(2)) - (80000*yb(5)*((672842079*yb(10)*yb(2)^2)/162700000000 + (594909*yb(8)*yb(2))/(160000*yb(5)) + (8379*yb(9)*yb(2)^2*((11431*yb(1))/50000 + (117363*yb(3))/(1000000*yb(2))))/(800*yb(5))))/(594909*yb(9)*yb(2)^2))*((161*yb(1))/25 + (1653*yb(3))/(500*yb(2)) - (1600000*yb(5)*((672842079*yb(10)*yb(2)^2)/162700000000 + (594909*yb(8)*yb(2))/(160000*yb(5)) + (8379*yb(9)*yb(2)^2*((11431*yb(1))/50000 + (117363*yb(3))/(1000000*yb(2))))/(800*yb(5))))/(594909*yb(9)*yb(2)^2)) + 3/100))/800)/yb(5)) + yb(8)*(yb(3) + (981*cos(yb(1) - yb(4)))/(100*yb(2)) - ((8379*yb(2)^2*((161*yb(1))/25 + (1653*yb(3))/(500*yb(2)) - (1600000*yb(5)*((672842079*yb(10)*yb(2)^2)/162700000000 + (594909*yb(8)*yb(2))/(160000*yb(5)) + (8379*yb(9)*yb(2)^2*((11431*yb(1))/50000 + (117363*yb(3))/(1000000*yb(2))))/(800*yb(5))))/(594909*yb(9)*yb(2)^2)))/800 + sin(epsilon + yb(1))*((10000*yb(2))/17013 + (3*yb(6)*((100*yb(2))/17013 - 11))/1000 + 1400))/(yb(2)*yb(5))) + yb(14)*yb(2)*cos(yb(1) - yb(4)) - yb(13)*yb(2)*sin(yb(1) - yb(4)) - (728973*yb(10)*yb(2)^2*((683*yb(1))/1000 + (21663*yb(3))/(2500*yb(2)) - (4160000*yb(5)*((672842079*yb(10)*yb(2)^2)/162700000000 + (594909*yb(8)*yb(2))/(160000*yb(5)) + (8379*yb(9)*yb(2)^2*((11431*yb(1))/50000 + (117363*yb(3))/(1000000*yb(2))))/(800*yb(5))))/(594909*yb(9)*yb(2)^2) - 1/20))/162700000 + 1];
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Surrogate Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!