MATLAB and LAPACK implementation of the SVD algorithm - not the same output?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
LAPACKE_cgesvd()
But the outputs are not the same.
Here is one example:
in = [1+2i 2+4i 3+6i 4+8i;
2+3i 4+6i 6+9i 8+12i;
3+4i 6+8i 9+12i 12+16i;
4+5i 8+10i 12+15i 16+20i];
[U,S,V] = svd(in);
This gives
U =
-0.109108945117997 - 0.218217890235993i 0.909365643461770 + 0.318130360459734i 0.036386779676407 - 0.084386315028456i 0.052751601014692 + 0.033100021335301i
-0.218217890235992 - 0.327326835353989i -0.037388878899514 - 0.059582067281587i -0.116960851562535 + 0.558535127042627i -0.249442499023482 + 0.672627129227888i
-0.327326835353989 - 0.436435780471985i -0.117020313474447 + 0.048160693713279i -0.345516960640487 + 0.358878427669969i 0.391668855331377 - 0.533654905367364i
-0.436435780471985 - 0.545544725589981i -0.219753961051779 - 0.050933678992021i 0.293035065226691 - 0.576080183457497i -0.205991407911317 + 0.029126130759720i
S =
50.199601592044544 0 0 0
0 0.000000000000004 0 0
0 0 0.000000000000000 0
0 0 0 0.000000000000000
V =
-0.182574185835055 + 0.000000000000000i -0.749839996855303 + 0.000000000000000i 0.635929749093960 + 0.000000000000000i 0.000000000000000 + 0.000000000000000i
-0.365148371670110 + 0.000000000000000i -0.099644835021179 - 0.055294049648946i -0.222326993896782 - 0.065198538162360i -0.274861567584794 - 0.851146943050864i
-0.547722557505166 + 0.000000000000000i 0.582096115689033 + 0.184313498829819i 0.529113396624621 + 0.217328460541199i -0.000000000000000 + 0.000000000000001i
-0.730296743340221 + 0.000000000000000i -0.199289670042359 - 0.110588099297891i -0.444653987793565 - 0.130397076324720i 0.137430783792397 + 0.425573471525431i
When I run the LAPACK C code, I get:
U
[0][0] = -0.109108955 -0.218217865i [0][1] = +0.719114125 -0.452113479i [0][2] = +0.022277016 +0.064515218i [0][3] = -0.409647375 +0.215580061i
[1][0] = -0.218217909 -0.327326864i [1][1] = +0.084657431 -0.228100479i [1][2] = +0.500972092 -0.310676992i [1][3] = +0.300640881 -0.590053499i
[2][0] = -0.327326834 -0.436435789i [2][1] = +0.109215073 +0.273434073i [2][2] = -0.344847411 -0.481100261i [2][3] = +0.325270653 +0.399385184i
[3][0] = -0.436435819 -0.545544684i [3][1] = -0.340743810 +0.128338531i [3][2] = +0.002677787 +0.545402348i [3][3] = -0.279374570 -0.061697662i
S
[0] = 50.1995964 [1] = 1.69897112e-06 [2] = 1.54533879e-07 [3] = 3.96336745e-14
Vtransposed
[0][0] = -0.182574213 -0.000000000i [0][1] = -0.365148425 -0.000000000i [0][2] = -0.547722638 +0.000000028i [0][3] = -0.730296850 -0.000000000i
[1][0] = -0.219238073 -0.000000000i [1][1] = +0.210008949 +0.144917369i [1][2] = -0.626949847 -0.483057886i [1][3] = +0.420017421 +0.289834768i
[2][0] = -0.958436847 -0.000000000i [2][1] = +0.021519713 -0.033149216i [2][2] = +0.247748464 +0.110497266i [2][3] = +0.043038044 -0.066298351i
[3][0] = -0.000000639 -0.000000000i [3][1] = -0.892759502 +0.054592617i [3][2] = +0.000000003 -0.000000026i [3][3] = +0.446379900 -0.027296286i
U: Seems like the first U column is good! But the rest is totally different.
S: All good, if we approximate small C outputs to be zero.
Vt: Only the first element seems to be the same, the rest doesn't match to Matlab's output.
What is the reason for this?
Am I doing something wrong?
Respuestas (1)
David Goodmanson
el 23 de Feb. de 2022
Editada: David Goodmanson
el 23 de Feb. de 2022
Hi Danijel,
actually it's the columns that have different signs. That's for the following reason: Suppose the svd of the matrix 'in' is
in = USV'
and let
A =
[1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1]
Then, since A*A = I (4x4 identity)
in = U(AA)S(AA)V'.
Since S is diagonal, ASA = S and
in = (UA)S(AV')
So if U is a solution, so is UA. But UA just multiplies the 4th column of U by a minus sign. AV' is the accomanying solution and it multiplies the 4th row of V" by a minus sign, which means the 4th column of V gets a minus sign. You can obviously do the same for any column of both U and V, meaning that the signs of the columns are arbitrary. In your case the 3rd and 4th columns of U have the minus sign compared to Lapack, so if you take a look at V, its 3rd and 4th columns should also have a minus sign compared to Lapack. Once the signs are set, you just have to stay consistent for the rest of the calculation.
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!