Non linear multiple curve fitting

16 visualizaciones (últimos 30 días)
Alessio Pricci
Alessio Pricci el 14 de Mzo. de 2022
Editada: Torsten el 15 de Mzo. de 2022
Dear all,
I'm trying to do the multiple nonlinear regression of some rheology curves (rheology.png). In particular, viscisty (visc.txt) changes with both temperature (T.txt) and shear rate (shear_rate.txt).
I would find a nonlinear regression of the form given in the attached 'regression_model.txt', where eta is the viscosity, T the temperature and gamma the shear rate.
but I'm having problems... I tried with nonlinfit, but this worked on only if a fix a given value of temperature (so, for a single variable the regression was ok).
How can I perform this regression in a simple way?
I would thanks in advance anyone who will contribute to help me
Best regards,
AP

Respuesta aceptada

Torsten
Torsten el 14 de Mzo. de 2022
Editada: Torsten el 14 de Mzo. de 2022
Form a big matrix A:
First column: a vector of 1's
Second column: log(gamma) or log10(gamma) (depending on what "lg" means)
Third column: (log(gamma)).^2 or (log10(gamma)).^2 (depending on what "lg" means)
Fourth column: T*log(gamma) or T*log10(gamma) (depending on what "lg" means)
Fifth column: T
Sixth column: T.^2
and a big vector b, consisting of one column with the corresponding values for log(eta) or log10(eta) ( (depending on what lg means)
Then you can solve for the vector v =[ A0; A1; A11; A12; A2; A22] of constants in your model by typing
v = A\b.
  5 comentarios
Torsten
Torsten el 14 de Mzo. de 2022
Editada: Torsten el 15 de Mzo. de 2022
D1 = 7.40688e+12;
D2 = 373.15;
A1 = 30.62;
A2 = 51.6;
n = 0.2411;
tau = 72297.9;
T1 = 210+273.15;
T2 = 245+273.15;
T3 = 280+273.15;
shear_rate=(linspace(1e-1,1e4,1e5)).';
V = @(T) D1*exp(-(A1*(T-373.15))./(A2+(T-373.15)))./((1+((D1*exp(-(A1*(T-373.15))./(A2+(T-373.15)))).*shear_rate./tau)).^(1-n));
T = T1;
v1 = V(T1);
T = T2;
v2 = V(T2);
T = T3;
v3 = V(T3);
A = [ones(3*numel(shear_rate),1),...
[log10(shear_rate);log10(shear_rate);log10(shear_rate)],...
[(log10(shear_rate)).^2;(log10(shear_rate)).^2;(log10(shear_rate)).^2],...
[T1*log10(shear_rate);T2*log10(shear_rate);T3*log10(shear_rate)],...
[T1*ones(numel(shear_rate),1);T2*ones(numel(shear_rate),1);T3*ones(numel(shear_rate),1)],...
[T1^2*ones(numel(shear_rate),1);T2^2*ones(numel(shear_rate),1);T3^2*ones(numel(shear_rate),1)]];
b = [log10(v1);log10(v2);log10(v3)];
v0 = A\b
v = lsqnonlin(@(x)fun(x,A,b),v0)
T = T3;
aaaa = v(1) + v(2)*log10(shear_rate) + v(3)*(log10(shear_rate)).^2 + v(4)*T.*log10(shear_rate) + v(5)*T + v(6)*T^2;
aaaa = 10.^(aaaa);
%% Graphical representation
loglog(shear_rate,aaaa,'b-',shear_rate,v3,'r-');
function res = fun(x,A,b)
res = 10.^(A*x) - 10.^b;
end
Torsten
Torsten el 14 de Mzo. de 2022
Be careful with the log-expressions:

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Support Vector Machine Regression en Help Center y File Exchange.

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by