Borrar filtros
Borrar filtros

QR Factorization Using Householder Transformations

60 visualizaciones (últimos 30 días)
Hüseyin
Hüseyin el 12 de En. de 2015
Respondida: Davide Poggiali el 20 de Abr. de 2020
function [Q,R]=QRfactor(A)
[m,n]=size(A);
R=A; %Start with R=A
Q=eye(m); %Set Q as the identity matrix
for k=1:m-1
x=zeros(m,1);
x(k:m,1)=R(k:m,k);
g=norm(x);
v=x; v(k)=x(k)+g;
%Orthogonal transformation matrix that eliminates one element
%below the diagonal of the matrix it is post-multiplying:
s=norm(v);
if s~=0, w=v/s; u=2*R'*w;
R=R-w*u'; %Product HR
Q=Q-2*Q*w*w'; %Product QR
end
end
for A=[-2 2 3; 1 3 5; -3 -1 2]
I got the answers Q and R different from when I use [Q,R]=qr(A). Where am I wrong with code.
  1 comentario
John D'Errico
John D'Errico el 12 de En. de 2015
Please learn to use the code button when you post code. It takes only one click of the mouse to do so.

Iniciar sesión para comentar.

Respuesta aceptada

Titus Edelhofer
Titus Edelhofer el 12 de En. de 2015
Hi Hüseyin,
I don't think something is wrong. Q*R gives A (at least for your matrix A). Having different Q and R from MATLAB's implementation does not necessarily mean something is wrong (as long as Q*R=A and Q is orthogonal, i.e. Q'*Q = identity).
Titus
  3 comentarios
Hüseyin
Hüseyin el 12 de En. de 2015
I know Q*R=A but some elements of Q and R is different (negative/positive) in my written code.. I'm trying to find how matlab computes [Q,R]=qr(A)
John D'Errico
John D'Errico el 12 de En. de 2015
Editada: John D'Errico el 12 de En. de 2015
You are not listening. Q and R are not unique. Your code is fine. That it produces elements with sign differences in some cases merely means that an arbitrary choice was made about sign in the MATLAB code that differs from your choice. And since the MATLAB code for QR is proprietary, you can NEVER know exactly what they did.

Iniciar sesión para comentar.

Más respuestas (2)

Francesco Onorati
Francesco Onorati el 9 de Jun. de 2016
The reason why there are differencies in the sign is that for numerical stability the 2-norm of each vector is taken with the opposite sign of the pivotal element of the vector itself. As you take always the norm as positive, sometimes it is in agreement with MATLAB code, sometimes it is not (here I'm supposing MATLAB uses Housolder transformation to do QR decomposition).

Davide Poggiali
Davide Poggiali el 20 de Abr. de 2020
You just have to change two lines
g=-sign(x(k))*norm(x);
v=x; v(k)=x(k)-g;
to get what you're looking for. source: wiki

Categorías

Más información sobre Logical en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by