Solving an initial value problem for a PDE
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Having the following initial value problem
with some mathematical computations we reach to an end that an implicit general solution of this pde can have the following form
if we had phi=e^(-x^2) for example,
I have been able to solve a similar problem to this but the genral solution was only a function of x and t, but here we have also u, so how can we possibly do that.
0 comentarios
Respuestas (1)
Torsten
el 26 de Abr. de 2022
Editada: Torsten
el 26 de Abr. de 2022
The method of characteristics gives the equations
dt/ds = 1, t(0) = 0
dx/ds = u, x(0) = x0
du/ds = 0, u(0) = phi(x0)
with solution
x = x0 + phi(x0) * t
Thus to get the solution u(x,t) in (x,t), you will have to solve
x - x0 - phi(x0)*t = 0
for x0.
The solution u(x,t) in (x,t) is then given by u(x,t) = phi(x0).
Ver también
Categorías
Más información sobre Eigenvalue Problems en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!