You had a misunderstanding. The A variable should be a scalar, not a vector. All issues stemmed from that one misunderstanding.
rng default
A = 2; % Was [2,3]
a = [-0.9,-2.9];
tdata = 3*rand(200,1);
tdata = sort(tdata); % Increasing times for easier plotting
noisydata=0.07*randn(size(tdata));
ydata = A.*exp(a(1).*tdata).*cos(a(2).*tdata) + noisydata  ;
plot(tdata,ydata,'b*')
xlabel 't'
ylabel 'Response'

A = optimvar('A'); % used to be of size 2
a = optimvar('a',2);
objfunction =@(A,a)A.*exp(a(1).*tdata).*cos(a(2).*tdata);
response = fcn2optimexpr(objfunction,A,a,"ReuseEvaluation",true) % 200-by-1, not 200-by-2
response = 
  200×1 Nonlinear OptimizationExpression array with properties:
    IndexNames: {{}  {}}
     Variables: [1×1 struct] containing 2 OptimizationVariables
  See expression formulation with show.
obj = sum((response - ydata).^2);
%%%%%%%%error appear when run the optimproblem
lsqprob = optimproblem;
lsqprob.Objective=obj;
x0.A = 1/2; % was [1/2 3/2]
x0.a = [-1/2,-3/2];
show(lsqprob)
  OptimizationProblem : 
	Solve for:
       A, a
	minimize :
       sum((((A .* exp((a(1) .* extraParams{1}))) .* cos((a(2) .* extraParams{2}))) - extraParams{3}).^2)
         extraParams{1}:
         0.0139
         0.0357
         0.0462
         0.0955
         0.1033
         0.1071
         0.1291
         0.1385
         0.1490
         0.1619
         0.1793
         0.2276
         0.2279
         0.2345
         0.2434
         0.2515
         0.2533
         0.2894
         0.2914
         0.2926
         0.3200
         0.3336
         0.3570
         0.3700
         0.3810
         0.3897
         0.3959
         0.4082
         0.4159
         0.4257
         0.4349
         0.4366
         0.4479
         0.4571
         0.4728
         0.4865
         0.4878
         0.4969
         0.5070
         0.5136
         0.5455
         0.5505
         0.5517
         0.5606
         0.5669
         0.5898
         0.6714
         0.6869
         0.7043
         0.7197
         0.7199
         0.7251
         0.7306
         0.7533
         0.7628
         0.7653
         0.7725
         0.7796
         0.7889
         0.7914
         0.8281
         0.8308
         0.8355
         0.8575
         0.8890
         0.9190
         0.9336
         0.9513
         1.0114
         1.0132
         1.0212
         1.0500
         1.0529
         1.0550
         1.0595
         1.1055
         1.1077
         1.1413
         1.1447
         1.1692
         1.1767
         1.1993
         1.2054
         1.2117
         1.2518
         1.2653
         1.2942
         1.3076
         1.3162
         1.3280
         1.3368
         1.3404
         1.3516
         1.3528
         1.4082
         1.4199
         1.4561
         1.4604
         1.4678
         1.4693
         1.4726
         1.4951
         1.5179
         1.5255
         1.5323
         1.5397
         1.5856
         1.5924
         1.6150
         1.6406
         1.6410
         1.6416
         1.6492
         1.6496
         1.7035
         1.7065
         1.7256
         1.7391
         1.7558
         1.7558
         1.8059
         1.8481
         1.8662
         1.8769
         1.8971
         1.9389
         1.9432
         1.9473
         1.9622
         1.9653
         1.9664
         1.9672
         2.0362
         2.0391
         2.0603
         2.0676
         2.0845
         2.0972
         2.1181
         2.1281
         2.1952
         2.2294
         2.2341
         2.2445
         2.2538
         2.2612
         2.2641
         2.2716
         2.2732
         2.2966
         2.3247
         2.3271
         2.3375
         2.3407
         2.3408
         2.3766
         2.3829
         2.3845
         2.3856
         2.4002
         2.4008
         2.4429
         2.4442
         2.4519
         2.4529
         2.4636
         2.4704
         2.4775
         2.4925
         2.5222
         2.5474
         2.5591
         2.6061
         2.6079
         2.6727
         2.7002
         2.7081
         2.7174
         2.7319
         2.7400
         2.7401
         2.7472
         2.7516
         2.7878
         2.7882
         2.8020
         2.8020
         2.8262
         2.8344
         2.8507
         2.8684
         2.8715
         2.8725
         2.8779
         2.8785
         2.8792
         2.8857
         2.8947
         2.9118
         2.9884
       extraParams{2}:
         0.0139
         0.0357
         0.0462
         0.0955
         0.1033
         0.1071
         0.1291
         0.1385
         0.1490
         0.1619
         0.1793
         0.2276
         0.2279
         0.2345
         0.2434
         0.2515
         0.2533
         0.2894
         0.2914
         0.2926
         0.3200
         0.3336
         0.3570
         0.3700
         0.3810
         0.3897
         0.3959
         0.4082
         0.4159
         0.4257
         0.4349
         0.4366
         0.4479
         0.4571
         0.4728
         0.4865
         0.4878
         0.4969
         0.5070
         0.5136
         0.5455
         0.5505
         0.5517
         0.5606
         0.5669
         0.5898
         0.6714
         0.6869
         0.7043
         0.7197
         0.7199
         0.7251
         0.7306
         0.7533
         0.7628
         0.7653
         0.7725
         0.7796
         0.7889
         0.7914
         0.8281
         0.8308
         0.8355
         0.8575
         0.8890
         0.9190
         0.9336
         0.9513
         1.0114
         1.0132
         1.0212
         1.0500
         1.0529
         1.0550
         1.0595
         1.1055
         1.1077
         1.1413
         1.1447
         1.1692
         1.1767
         1.1993
         1.2054
         1.2117
         1.2518
         1.2653
         1.2942
         1.3076
         1.3162
         1.3280
         1.3368
         1.3404
         1.3516
         1.3528
         1.4082
         1.4199
         1.4561
         1.4604
         1.4678
         1.4693
         1.4726
         1.4951
         1.5179
         1.5255
         1.5323
         1.5397
         1.5856
         1.5924
         1.6150
         1.6406
         1.6410
         1.6416
         1.6492
         1.6496
         1.7035
         1.7065
         1.7256
         1.7391
         1.7558
         1.7558
         1.8059
         1.8481
         1.8662
         1.8769
         1.8971
         1.9389
         1.9432
         1.9473
         1.9622
         1.9653
         1.9664
         1.9672
         2.0362
         2.0391
         2.0603
         2.0676
         2.0845
         2.0972
         2.1181
         2.1281
         2.1952
         2.2294
         2.2341
         2.2445
         2.2538
         2.2612
         2.2641
         2.2716
         2.2732
         2.2966
         2.3247
         2.3271
         2.3375
         2.3407
         2.3408
         2.3766
         2.3829
         2.3845
         2.3856
         2.4002
         2.4008
         2.4429
         2.4442
         2.4519
         2.4529
         2.4636
         2.4704
         2.4775
         2.4925
         2.5222
         2.5474
         2.5591
         2.6061
         2.6079
         2.6727
         2.7002
         2.7081
         2.7174
         2.7319
         2.7400
         2.7401
         2.7472
         2.7516
         2.7878
         2.7882
         2.8020
         2.8020
         2.8262
         2.8344
         2.8507
         2.8684
         2.8715
         2.8725
         2.8779
         2.8785
         2.8792
         2.8857
         2.8947
         2.9118
         2.9884
       extraParams{3}:
         2.0062
         1.9117
         1.9451
         1.7782
         1.6691
         1.7957
         1.6789
         1.6345
         1.6244
         1.5602
         1.4110
         1.2761
         1.2759
         1.2219
         1.3405
         1.1280
         1.1478
         0.9800
         0.9390
         1.0025
         0.8799
         0.9476
         0.7227
         0.6102
         0.7500
         0.6871
         0.5583
         0.4173
         0.4596
         0.4391
         0.4314
         0.3866
         0.3900
         0.3491
         0.1715
         0.1390
         0.1485
         0.1298
         0.1048
         0.1034
        -0.2258
        -0.0634
         0.0514
        -0.1410
        -0.0224
        -0.1391
        -0.4037
        -0.4280
        -0.5918
        -0.5227
        -0.4047
        -0.5213
        -0.5369
        -0.6361
        -0.6045
        -0.5904
        -0.5894
        -0.6573
        -0.6627
        -0.5084
        -0.8589
        -0.5481
        -0.6861
        -0.6632
        -0.8761
        -0.8185
        -0.8026
        -0.7585
        -0.9043
        -0.7540
        -0.8698
        -0.7691
        -0.7267
        -0.7484
        -0.6931
        -0.6676
        -0.7817
        -0.6879
        -0.7687
        -0.7692
        -0.6036
        -0.6415
        -0.6378
        -0.5622
        -0.5308
        -0.5288
        -0.4233
        -0.4256
        -0.4606
        -0.5075
        -0.4911
        -0.3564
        -0.5349
        -0.4219
        -0.4676
        -0.2408
        -0.1933
        -0.2467
        -0.2399
        -0.4066
        -0.1866
        -0.3450
        -0.3183
        -0.1385
        -0.2001
        -0.0936
        -0.0073
         0.0150
        -0.0618
         0.0522
         0.0283
         0.0799
         0.0693
         0.0952
         0.0882
         0.0905
         0.1923
        -0.0128
         0.1172
         0.0636
         0.1705
         0.2739
         0.2979
         0.1754
         0.2244
         0.2855
         0.2570
         0.3000
         0.3117
         0.2195
         0.2725
         0.1359
         0.3776
         0.2536
         0.2141
         0.2806
         0.1977
         0.2953
         0.2551
         0.4452
         0.3561
         0.0897
         0.2936
         0.1607
         0.2369
         0.2631
         0.3027
         0.2279
         0.3566
         0.2017
         0.2442
         0.2666
         0.2206
         0.2746
         0.2355
         0.1383
         0.0633
         0.3188
         0.1458
         0.1869
         0.2187
         0.1624
         0.0903
         0.1162
         0.1397
         0.2454
         0.0775
         0.1884
         0.1459
         0.0898
         0.0169
         0.0639
         0.0499
        -0.0479
         0.0320
        -0.0534
        -0.0065
         0.0190
        -0.0751
        -0.0358
         0.0088
        -0.1475
         0.0515
         0.1325
         0.0298
        -0.0652
        -0.0131
        -0.1252
         0.0757
         0.0041
        -0.0127
        -0.1301
        -0.0467
        -0.1099
        -0.0928
        -0.1112
        -0.1451
        -0.1397
        -0.0957
        -0.2175
[sol ,fval] =  solve(lsqprob,x0)
Solving problem using lsqnonlin.
Local minimum found.
Optimization completed because the size of the gradient is less than
the value of the optimality tolerance.
sol = struct with fields:
    A: 2.0035
    a: [2×1 double]
fval = 0.9375
Alan Weiss
MATLAB mathematical toolbox documentation
