Help ME ! Error in feature input layer in CNN, Number of observations in X and Y disagree
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Amir Hossein Asadian
el 8 de Mayo de 2022
Respondida: Arman Ali
el 17 de Abr. de 2023
I am trying to use a deep neural network in Matlab. However, I get the error:
Number of observations in X and Y disagree.
Below is my current implementation:
[inputs, targets] = load_data();
inputs = inputs'; % size : 18000*10
targets = targets'; % size : 18000*5
randDataNum = 0.15*18000;
%% Validation Data
idx_val = randperm(size(inputs,1),randDataNum);
xVal = inputs(idx_val,:);
inputs(idx_val,:) = [];
yVal = targets(idx_val,:);
targets(idx_val,:) = [];
%% Test Data
idx_test = randperm(size(inputs,1),randDataNum);
xTest = inputs(idx_test,:);
inputs(idx_test,:) = [];
yTest = targets(idx_test,:);
targets(idx_test,:) = [];
%% Define Network Architecture
% Define the convolutional neural network architecture.
layers = [
featureInputLayer(10,'Name','inputs')
fullyConnectedLayer(30) % 384 refers to number of neurons in next FC hidden layer
batchNormalizationLayer
reluLayer
fullyConnectedLayer(30) % 384 refers to number of neurons in next FC hidden layer
reluLayer
fullyConnectedLayer(5) % 2 refers to number of neurons in next output layer (number of output classes)
regressionLayer];
options = trainingOptions('adam',...
'InitialLearnRate', 0.0001, ...
'MiniBatchSize',16, ...
'Shuffle','every-epoch', ...
'MaxEpochs',500, ...
'Verbose',false,...
'Plots','training-progress',...
'ValidationData',{xVal,yVal'});
net = trainNetwork(inputs,targets,layers,options);
how can i fix this error ?
I am using MATLAB 2021b
1 comentario
Fahad Abdul Wahid
el 5 de Ag. de 2022
I've some doubts regarding your function. I'm learning deep learning and wanted to know in the below function
featureInputLayer(10,'Name','inputs') - what does 10 signify?
fullyConnectedLayer(30) what does 30 signify?
fullyConnectedLayer(5) what does 5 signify?
why is there two fully connected layer? What happens when you have only 1 fully connected layer?
Respuesta aceptada
Cris LaPierre
el 25 de Jun. de 2022
Editada: Cris LaPierre
el 29 de Jun. de 2022
I see the error in this line:
'ValidationData',{xVal,yVal'});
% ^
You are transposing yVal. Assuming your input and target variables are the size you say, this is unnecessary, and causing your number of observations to disagree. Remove the apostraphe, and it should run.
3 comentarios
nagihan yagmur
el 17 de Mzo. de 2023
What is the content of the target data? I am also facing a problem. the target of my dataset consists of 5 different classes. Is yours like this too? can you help me
Cris LaPierre
el 17 de Mzo. de 2023
@nagihan yagmur please share the same information as the OP so we can help you. Also, if you create a new question, it will get more eyes on it, as this one has an accepted answer.
Más respuestas (2)
Sulaymon Eshkabilov
el 25 de Jun. de 2022
As I see in your code the X and Y have mismacthed sizes:
inputs = inputs'; % size : 18000*10
targets = targets'; % size : 18000*5
Make sure that they have the same size when you feed them in trainNetwork().
1 comentario
Sulaymon Eshkabilov
el 25 de Jun. de 2022
Another point is a proper use of size() command, while selecting some data for validation and testing using random number generator, i.e., randperm().
Arman Ali
el 17 de Abr. de 2023
@Amir Hossein Asadian can you contact me at arman.ncepu@gmail.com , need your help. Thank you
0 comentarios
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!