Rotate the coordinate system to align an existing plane with Y'Z' plane
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
PASUNURU SAI VINEETH
el 15 de Mayo de 2022
Comentada: PASUNURU SAI VINEETH
el 17 de Mayo de 2022
I have a plane z = (-47.407313)*x + (0.322175)*y + (-3.333979) and data points of a ball flight trajectory on it. Even though the best fit is known to be a parabola, since the plane in discussion doesn't align with any of the XY, YZ and ZX planes, it is infeasible to define an explicit relationship z = F(x,y) for obtaining such a curve using curve fitting. Now, my only idea is to rotate the coordinate system so that the plane is parallel to Y'Z' where I can apply (z')=a(y')^2+b(y')+c. After finding the best fit and sampling the points on the fit, I need to retract the coordinate system to get the actual coordinates. Even though the idea seems clear, the application in MATLAB doesn't and I'm hoping someone can guide me with the rotation.
I would be grateful if anyone can suggest an alternate, easier approach to get the 3D best fit equation without this hassle.
3 comentarios
Matt J
el 16 de Mayo de 2022
You would need a parametric model for the 3D trajectory (x(t), y(t),z(t))
Respuestas (3)
Torsten
el 15 de Mayo de 2022
Editada: Torsten
el 15 de Mayo de 2022
But are you sure that the parabola in the YZ plane is not also rotated ?
5 comentarios
Torsten
el 16 de Mayo de 2022
If you have a 3d-model of the parabola of the form
(a*t^2+b*t+c;d*t^2+e*t+f;g*t^2+h*t+i)
you can directly fit the 9 parameters in question.
Bruno Luong
el 16 de Mayo de 2022
2 comentarios
Bruno Luong
el 16 de Mayo de 2022
The answer I gave in the above thread shows to use SVD to fit a point clouds, the input point cloud can be a non degenerated curve (i.e. not a line) and not necessary a plane.
Matt J
el 16 de Mayo de 2022
Editada: Matt J
el 16 de Mayo de 2022
If you didn't obtain your plane fit with planarFit() from,
then I suggest you do so. If you did use planarFit(), then the rotation is easy:
pfit=planarFit(xyz);
yz_prime = pfit.R(:,2:3)'*xyz;
However, once you've rotated the data this way, you still can't be sure in which direction gravity pulls (see also my comment above).
One solution would be to post-optimize the in-plane rotation of yz
theta=fminbnd(@(theta) postfun(theta,yz_prime), 0,pi);
[~,abc]=postfun(theta,yz_prime)
using the 1D objective function,
function [fval,abc]=postfun(theta,yz_prime)
R=makehgtform('zrotate',theta);
yz=R(1:2,1:2)*yz_prime;
[abc,S]=polyfit(yz(:,1),yz(:,2),2)
fval=S.normr;
end
Ver también
Categorías
Más información sobre Curve Fitting Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!