What variable type is "Population" in a Genetic Algorthim and how to store individuals with long genomes?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Jacob Child
el 16 de Mayo de 2022
Comentada: Alan Weiss
el 17 de Mayo de 2022
I am coding a genetic algorithm where each individual will be made up of several points, ie
Individual1 = [1 2 3 4 5];
Individual2 = [6 7 8 9 10];
on through all the indviduals. I have a custom creation function for the initial population, but I am unsure if I can store each individual in a seperate cell or row, or what to do. The documentation also seemed to say to call the fitness function in my creation function which I don't fully understand, which leads to another question, does my fitness function just output the fitness, or does it need to output the population and fitness in a matrix? Feel free to ask more questions to clarify, this is my first time asking one.
Here is the Documentation on creation functions
function Population = myfun(GenomeLength, FitnessFcn, options)
I am interpreting GenomeLength to be the number of points in each individual and assume that my output Population will look something like follows-
%for k number of individuals
k = 10;
for i = 1:k
Population{i} = IndividualGeneration(GenomeLength); %calls the function for generating the individual and stores that individual in a cell in Population
end
In my mind this ouputs something like this- Population = {1 2 3 4 5}, {6 7 8 9 10}, with each individual in a cell. can the GA work with this format?
0 comentarios
Respuesta aceptada
Alan Weiss
el 16 de Mayo de 2022
Yes, it is possible to use ga with a custom population. For an example see Custom Data Type Optimization Using the Genetic Algorithm.
Alan Weiss
MATLAB mathematical toolbox documentation
2 comentarios
Alan Weiss
el 17 de Mayo de 2022
You can put each individual into a ROW and use Mixed Integer ga Optimization for an integer-valued population.
Alan Weiss
MATLAB mathematical toolbox documentation
Más respuestas (0)
Ver también
Categorías
Más información sobre Genetic Algorithm en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!