neural network problem in newff
    4 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Dhandapani.S
 el 28 de En. de 2015
  
    
    
    
    
    Respondida: Greg Heath
      
      
 el 28 de En. de 2015
            eror shown was Error using newff (line 107) Input ranges is not a two column matrix. Error in concir1 (line 25) net=newff(input_n,target_n,12); >> wedinput.dat data has 24 * 98 and wedtarget.dat data has 24*1 double . matllab versionis 8.0.0.783 R2012B.
matlab version 10a gives the output for my collegaue. please help me in this regard.
0 comentarios
Respuesta aceptada
  Greg Heath
      
      
 el 28 de En. de 2015
        close all ; clc; clf; clear all;
% Load the Closing stock index Data
load wedinput.dat; load wedtarget.dat;
% Input and Target Data
input1=wedinput(1:24,1:198); target1=wedtarget(1:24,1);
1. INCORRECT. INPUT AND TARGETS SHOULD HAVE THE SAME NUMBER OF COLUMNS.
2. INPUT DIMENSIONALITY REDUCTION RECOMMENDED
% Preprocessing the input and target data % y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;[input_n,input_n_struct]=mapminmax(input1'); [target_n,target_n_struct]=mapminmax(target1');
3. INEFFICIENT. TRY MAPSTD ON INPUT WITH TANSIG HIDDEN NODES. REMOVE OR MODIFY OUTLIERS BEFORE TRAINING. IF NOT CLASSIFIER, USE MAPSTD ON OUTPUT ALSO.
P.S. EASIER TO USE ZSCORE
 HELP ZSCORE
 DOC  ZSCORE
disp('Input versus target After Preprocessing this data used for NN training');
4. PLOT 198 INPUTS ?
%[input_n target_n]; % Stote MSE,RMSE,MAE,MAPE and THEIL'U value of Train/Val/T
5. SPELLING
net=newff(input_n,target_n,12);
6. minmax(input_n) FOR YOUR OBSOLETE VERSION?
7. WHY H = 12?
%training the network net. %net.trainParam.epochs=1 net.divideFcn='divideblock';
net.divideParam.trainRatio=80; net.divideParam.valRatio=10; net.divideParam.testRatio=10;
8. Divide above by 100. BUT WHY NOT ACCEPT DEFAULTS?
net.trainFcn='trainlm';
9. DELETE ABOVE. IS A DEFAULT.
    [net tr Y E]=train(net,input_n,target_n);
 10. NMSE = mse(E)/mean(var(target_n',1)
 11. R2 = 1-NMSE
 12. USE tr TO OBTAIN VALUES FOR TRN/VAL/TST
% Simulation disp('Simulation Output for the given input'); simoutput=sim(net,input_n);
13. REDUNDANT simoutput = Y
[input_n ; simoutput];
14. DELETE ABOVE LINE. USELESS FOR N = 198
15. I'M STOPPING HERE.
%Output Normalized Version
disp('Normalized Simulation Output'); Norm_input=mapminmax('reverse',input_n,input_n_struct); Norm_simoutput=mapminmax('reverse',simoutput',target_n_struct);
%[Norm_input Norm_simoutput]; [Norm_input]; [Norm_simoutput] [target1 Norm_simoutput]
% Calculating Mean Square Error
perfmse=mse(E); fprintf('Mean Square Error:%d \n',perfmse);
0 comentarios
Más respuestas (0)
Ver también
Categorías
				Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
			
	Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

