How many dimensions do I need?

7 visualizaciones (últimos 30 días)
Lisbeth Ccoyo Ortiz
Lisbeth Ccoyo Ortiz el 5 de Jun. de 2022
Comentada: Cholla el 26 de Dic. de 2023
Create a script to compute the number of feature dimensions N needed to represent at least 99.9% of the variance in the feature set of the humanactivity dataset using the 'pca' function.
The steps are:
  • Compute eigvals using the 'pca' function
  • Define vector cumulative_percent_variance_permode, which is a vector the same size as eigvals that contains 100 times (to convert fraction to percentage) the cumulative sum of the normalized eigenvalues
  • Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in our dataset D
Script
load humanactivity.mat
D = feat; % [24075 x 60] matrix containing 60 feature measurements from 24075 samples
% compute eigvals
% compute the cumulative_percent_variance_permode vector.
% Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in D.

Respuestas (2)

Himanshu Desai
Himanshu Desai el 1 de Jun. de 2023
load humact.mat
D = feat; % [24075 x 60] matrix containing 60 feature measurements from 24075 samples
% compute eigvals
[eigvects,~,eigvals] = pca(D);
% compute the cumulative_percent_variance_permode vector.
percvar = 100*eigvals/sum(eigvals);
cumulative_percent_variance_permode = cumsum(percvar);
% Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in D.
%N = length(cumulative_percent_variance_permode (cumulative_percent_variance_permode >= 99.9))
%cumulative_percent_variance_permode
N=5;
  1 comentario
Cholla
Cholla el 26 de Dic. de 2023
How do you got N=5.
since output gives N=56.
can you please explain?

Iniciar sesión para comentar.


Sam Chak
Sam Chak el 5 de Jun. de 2022
Editada: Sam Chak el 5 de Jun. de 2022
Find the Sample Size N calculation formula in Google and show it here.
Then we maybe able to show how to compute that in MATLAB.
Also consider using the sampsizepwr() function. For more info, read the following:

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by