Finding Critical Value with Simulink

17 visualizaciones (últimos 30 días)
Esin Derin
Esin Derin el 24 de Jun. de 2022
Editada: Sam Chak el 24 de Jun. de 2022
I have to find several values of k1 in first order inertia and find the critical value when the system is on the stability boundary with k2=2.I have to find them with simulation in order to find the critical value of k1.
In attachemnt you can find my diagram.
  1 comentario
Jon
Jon el 24 de Jun. de 2022
You refer to an attachement with your diagram. I don't see any file attached, just a screen shot with part of a simulink diagram.
Also, from at least what I can see of your model, everything is linear, you would be better off doing this analysis using the linear analysis tools, included with the Control System Toolbox. Do you have this toolbox?

Iniciar sesión para comentar.

Respuesta aceptada

Sam Chak
Sam Chak el 24 de Jun. de 2022
Editada: Sam Chak el 24 de Jun. de 2022
It's a bit confusing with all the manual switches around. You should also provide the closed-loop system for investigation. Given
With , if my mental calculation is correct, then the closed-loop system should be (please check)
From this point, you can test over a range of and find that should make the system stable.
s = tf('s');
k1 = 0.375;
k2 = 2;
G = k1/(1.5*s^2 + s);
H = k2/(12*s + 1);
Gcl = minreal(feedback(G, H))
Gcl = 0.25 s + 0.02083 ------------------------------------ s^3 + 0.75 s^2 + 0.05556 s + 0.04167 Continuous-time transfer function.
pole(Gcl)
ans =
-0.7500 + 0.0000i -0.0000 + 0.2357i -0.0000 - 0.2357i
damp(Gcl) % damping ratio is practically zero, so oscillations are expected.
Pole Damping Frequency Time Constant (rad/seconds) (seconds) -4.16e-17 + 2.36e-01i 1.77e-16 2.36e-01 2.40e+16 -4.16e-17 - 2.36e-01i 1.77e-16 2.36e-01 2.40e+16 -7.50e-01 1.00e+00 7.50e-01 1.33e+00
step(Gcl, 200)
k1 = 0.00978; % no overshoot if k1 < 0.00979
G = k1/(1.5*s^2 + s);
Gcl = minreal(feedback(G, H))
Gcl = 0.00652 s + 0.0005433 ------------------------------------- s^3 + 0.75 s^2 + 0.05556 s + 0.001087 Continuous-time transfer function.
pole(Gcl)
ans =
-0.6694 + 0.0000i -0.0403 + 0.0008i -0.0403 - 0.0008i
damp(Gcl)
Pole Damping Frequency Time Constant (rad/seconds) (seconds) -4.03e-02 + 7.92e-04i 1.00e+00 4.03e-02 2.48e+01 -4.03e-02 - 7.92e-04i 1.00e+00 4.03e-02 2.48e+01 -6.69e-01 1.00e+00 6.69e-01 1.49e+00
step(Gcl)
Edit: To run this in Simulink, you can probably try Paul's trick as follows:
k1vec = [0.00978 (0.00978+0.375)/2 0.375]; % choose whatever gain values from 0 < k1 <= 0.375
for ii = 1:numel(k1vec)
k1 = k1vec(ii);
out = sim('Esin'); % use the actual name of the .slx file
% do whatever processing is needed on out
end

Más respuestas (0)

Categorías

Más información sobre Simulink en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by