Test or validate a model using (same number of images form each subfolder)

1 visualización (últimos 30 días)
Hi, i have three subfolders (good, moderate and severe) with images(3608, 406 and 200 images respectivly)
1-the accuracy is (98.18), is it ok?
2-after training my model,how to take (100 images from each subfolder to test (validate) the model) ?
3-what is the code for confusion matrix
Thanks
my code is next:
imds = imageDatastore('C:\Users\Rayan\Desktop\9_8_balance_data\R_9_1_GSM', ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.85,'randomized');
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,16);
net = resnet50;
inputSize = net.Layers(1).InputSize;
lgraph = layerGraph(net);
% call the find layers to Replace at : edit(fullfile(matlabroot,'examples','nnet','main','findLayersToReplace.m'))
edit(fullfile(matlabroot,'examples','nnet','main','findLayersToReplace.m'))
[learnableLayer,classLayer] = findLayersToReplace(lgraph);
[learnableLayer,classLayer] %#ok<NOPTS>
numClasses = numel(categories(imdsTrain.Labels));
if isa(learnableLayer,'nnet.cnn.layer.FullyConnectedLayer')
newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
elseif isa(learnableLayer,'nnet.cnn.layer.Convolution2DLayer')
newLearnableLayer = convolution2dLayer(1,numClasses, ...
'Name','new_conv', ...
'WeightLearnRateFactor',10, ...
'BiasLearnRateFactor',10);
end
lgraph = replaceLayer(lgraph,learnableLayer.Name,newLearnableLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,classLayer.Name,newClassLayer);
layers = lgraph.Layers;
connections = lgraph.Connections;
layers(1:20) = freezeWeights(layers(1:20));
lgraph = createLgraphUsingConnections(layers,connections);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain)
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
miniBatchSize=10;
valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize);
options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',10, ...
'InitialLearnRate',0.0007, ...
'Shuffle','every-epoch', ...
'ValidationFrequency',valFrequency, ...
'ValidationData',augimdsValidation, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(augimdsTrain,lgraph,options);
[YPred,probs] = classify(net,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels);
idx = randperm(numel(imdsValidation.Files),100);
R=1;
for j =1:25
figure(j)
for i = 1:4
subplot(2,2,i)
I = readimage(imdsValidation,idx(R));
imshow(I)
label = YPred(idx(R));
title(string(label) + ", " + num2str(100*max(probs(idx(R),:)),3) + "%");
R=R+1;
end
end

Respuesta aceptada

Image Analyst
Image Analyst el 4 de Jul. de 2022
Regarding accuracy. It might be. But let's say you were building a dog and cat trainer and gave it 10000 images of dogs and 30 images of cats. Then, once trained, you give it the test set comprised of both dogs and cats - 9818 dog images and 172 cat images - and it called every single one a dog. That's 98.18 accurate. Is it good enough? It didn't find a single cat but it was 98.18% accurate.

Más respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by