Why it is not making plot for different values of "M"?

1 visualización (últimos 30 días)
AVINASH SAHU
AVINASH SAHU el 8 de Jul. de 2022
Comentada: AVINASH SAHU el 8 de Jul. de 2022
syms x
alpha = -0.1;
sigma = 0.1;
eps = -0.1;
e = 0.2;
a = 2;
lambda = 2;
psi = 10;
figure
M_list = [4, 6, 8, 10];
for i = 1:numel(M_list)
M = M_list(i);
hbar = @(x) a - a.*x + x;
A1 = eps + alpha^3 + (3 * sigma^2 * alpha);
B1 = @(x) (-3 * lambda * M) * ((hbar(x).^2) + (2 .* hbar(x) .* alpha) + (sigma^2) + (alpha^2));
a1 = @(x) tanh(M .* hbar(x));
b1 = @(x) 1 - ((tanh(M .* hbar(x))).^2);
c1 = (M * alpha) - ((M^3 * A1)/3);
d1 = 2 * (M^2) * (1 + lambda);
C1 = @(x) a1(x) + (b1(x) .* c1);
D1 = @(x) d1 .* ((hbar(x).^3) + (3 .* (hbar(x).^2) .* alpha) + (3 .* hbar(x) .* (alpha)^2) + (3 .* hbar(x) .* (sigma)^2) + eps + (3 * alpha * (sigma^2)) + (alpha^3));
f1 = @(x) B1(x) + (3 * lambda .* C1(x) .* hbar(x)) + (3 * lambda .* C1(x) .* alpha) + (D1(x) .* C1(x));
f2 = @(x) 12 * (M^2) * (1 + lambda) .* C1(x);
f3 = psi * (e^3);
f4 = (1 + lambda) *180 * ((1 - e)^2); % 180 is not given in paper
f5 = 1/(2 + lambda);
F = @(x) ((f5 .* f1(x))./f2(x)) + (f3/f4);
q1 = @(x) hbar(x) ./ (2 .* F(x));
Q1 = integral(q1,0,1);
q2 = @(x) 1./(F(x));
Q2 = integral(q2,0,1);
Q = Q1/Q2;
p1 = @(x) (1./F(x)) .* ((0.5 .* hbar(x)) - Q);
P = @(x) integral(p1,0,x);
fplot(P, [0 1])
ylim([0 1])
set(gca, 'ytick', 0:0.1:1);
set(gca, 'xtick', 0:0.2:1);
xlabel('x')
ylabel('P(x)')
end
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.6e+02. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 8.0e+02. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.7e+02. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.
Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 2.1e+02. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy.
Warning: Function behaves unexpectedly on array inputs. To improve performance, properly vectorize your function to return an output with the same size and shape as the input arguments.

Respuesta aceptada

KSSV
KSSV el 8 de Jul. de 2022
Editada: KSSV el 8 de Jul. de 2022
You have to use hold on.
syms x
warning off
alpha = -0.1;
sigma = 0.1;
eps = -0.1;
e = 0.2;
a = 2;
lambda = 2;
psi = 10;
M_list = [4, 6, 8, 10];
figure
hold on
for i = 1:numel(M_list)
M = M_list(i);
hbar = @(x) a - a.*x + x;
A1 = eps + alpha^3 + (3 * sigma^2 * alpha);
B1 = @(x) (-3 * lambda * M) * ((hbar(x).^2) + (2 .* hbar(x) .* alpha) + (sigma^2) + (alpha^2));
a1 = @(x) tanh(M .* hbar(x));
b1 = @(x) 1 - ((tanh(M .* hbar(x))).^2);
c1 = (M * alpha) - ((M^3 * A1)/3);
d1 = 2 * (M^2) * (1 + lambda);
C1 = @(x) a1(x) + (b1(x) .* c1);
D1 = @(x) d1 .* ((hbar(x).^3) + (3 .* (hbar(x).^2) .* alpha) + (3 .* hbar(x) .* (alpha)^2) + (3 .* hbar(x) .* (sigma)^2) + eps + (3 * alpha * (sigma^2)) + (alpha^3));
f1 = @(x) B1(x) + (3 * lambda .* C1(x) .* hbar(x)) + (3 * lambda .* C1(x) .* alpha) + (D1(x) .* C1(x));
f2 = @(x) 12 * (M^2) * (1 + lambda) .* C1(x);
f3 = psi * (e^3);
f4 = (1 + lambda) *180 * ((1 - e)^2); % 180 is not given in paper
f5 = 1/(2 + lambda);
F = @(x) ((f5 .* f1(x))./f2(x)) + (f3/f4);
q1 = @(x) hbar(x) ./ (2 .* F(x));
Q1 = integral(q1,0,1);
q2 = @(x) 1./(F(x));
Q2 = integral(q2,0,1);
Q = Q1/Q2;
p1 = @(x) (1./F(x)) .* ((0.5 .* hbar(x)) - Q);
P = @(x) integral(p1,0,x);
fplot(P, [0 1])
end
legend(num2str(M_list'))
ylim([0 1])
set(gca, 'ytick', 0:0.1:1);
set(gca, 'xtick', 0:0.2:1);
xlabel('x')
ylabel('P(x)')

Más respuestas (0)

Categorías

Más información sobre Lighting, Transparency, and Shading en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by