symbolic integration depends on different equivalent forms of function

6 visualizaciones (últimos 30 días)
Michal
Michal el 15 de Jul. de 2022
Comentada: Michal el 17 de Jul. de 2022
I performed the following equaivalent symbolic integrations:
syms x y
A = int(x+y,x);
A_ = expand(A); % just expanded (equaivalent) form of A
B = expand(int(A,y))
B_ = expand(int(A_,y))
with the following results:
A =
(x*(x + 2*y))/2
A_ =
x^2/2 + y*x
B =
x^3/8 + (x^2*y)/2 + (x*y^2)/2
B_ =
(x^2*y)/2 + (x*y^2)/2
I expect B equal to B_, but there is a misterious additional term x^3/8 at B ??!!
Is that a bug???

Respuestas (2)

Torsten
Torsten el 15 de Jul. de 2022
The difference is a usual "constant of integration".
If you differentiate both B and B_ with respect to y and then with respect to x, you'll arrive at the expression x+y in both cases:
syms x y
B_ = (x^2*y)/2 + (x*y^2)/2;
B = x^3/8 + (x^2*y)/2 + (x*y^2)/2;
A_ = diff(B_,y);
A = diff(B,y);
expr1 = diff(A_,x)
expr1 = 
expr2 = diff(A,x)
expr2 = 
  7 comentarios
Torsten
Torsten el 15 de Jul. de 2022
I'm not surprised that
int((x*(x + 2*y))/2,y)
gives a result different from
int(x^2/2 + y*x,y).
See
syms x
int((x-1)^2,x)
ans = 
compared to
int(x^2-2*x+1,x)
ans = 
Paul
Paul el 15 de Jul. de 2022
Editada: Paul el 15 de Jul. de 2022
I'm not surprised either. I've seen cases where int() couldn't find a solution unless the integrand was manipulated using simplify, expand, etc. Here is an example from this Question
syms t
assume(t, "real")
f1 = 3*t-t*t*t;
f2 = 3*t*t;
f = [f1, f2];
df = diff(f, t);
a = 0;
b = 1;
normDf = sqrt(df(1)*df(1)+df(2)*df(2));
int(normDf,t,a,b) % no solution
ans = 
normDf = simplify(normDf)
normDf = 
int(normDf, t, a, b) % easy
ans = 
4

Iniciar sesión para comentar.


Michal
Michal el 16 de Jul. de 2022
Editada: Michal el 16 de Jul. de 2022
Simple solution to avoid integration constant effect:
int(f(x),x,0,x)
  4 comentarios
Torsten
Torsten el 16 de Jul. de 2022
Editada: Torsten el 16 de Jul. de 2022
syms x y
A1 = int(sin(x)+sin(y),x,0,x);
B1 = int(A1,y,0,y)
B1 = 
simplify(B1)
ans = 
A2 = int(sin(x)+sin(y),x);
B2 = int(A2,y)
B2 = 
You see, the integration constant of your method is x+y.
All I want to say is:
Each integration gives its individual integration constant. For the differential equation
d/dx (d/dy(F(x,y))) = x+y
e.g., the "integration constants" are functions of the form
G(x,y) = g1(x) + g2(y)
unless you fix F on a curve in the (x,y) plane (not parallel to one of he coordiante axes).
Some integration constants look more plausible, others less.
And now I will be quiet and you can have "the last word", if you want.

Iniciar sesión para comentar.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by