Plotting a 3D finition with 1D implicite variable

1 visualización (últimos 30 días)
Thomas TJOCK-MBAGA
Thomas TJOCK-MBAGA el 18 de Jul. de 2022
Editada: Torsten el 18 de Jul. de 2022
Hello! I have a 3D advection-dispersion équation as follows: dC/dt = Dx *d^2C/dx^2 + Dy *d^2C/dy^2 + Dz *d^2C/dz^2 - vx *dC/dx - vy *dC/dy - vy *dC/dz -mu*C. When using change of variable e.g. X = a*x + b*y + c*z i obtained a 1D advection-dispersion équation: dC/dt = D *d^2C/dX^2 - V*dC/dX -mu*C. The solution si in the form C(X,t) = exp((V/2D)*X+√V^2 + 4*D*mu)*erfc((X+√ 4*D*mu)/2√D*t).My problème si that i wanted to plot thé concentration C with respect to x, y, ans z for fixes values of other variables. How Can i do or in MATLAB knowing that the solution si expressed in term of X???
  2 comentarios
KSSV
KSSV el 18 de Jul. de 2022
DEfine your variables, write the formula; substitude the variables in the formula and plot.
Torsten
Torsten el 18 de Jul. de 2022
Editada: Torsten el 18 de Jul. de 2022
I have a 3D advection-dispersion équation as follows: dC/dt = Dx *d^2C/dx^2 + Dy *d^2C/dy^2 + Dz *d^2C/dz^2 - vx *dC/dx - vy *dC/dy - vy *dC/dz -mu*C. When using change of variable e.g. X = a*x + b*y + c*z i obtained a 1D advection-dispersion équation: dC/dt = D *d^2C/dX^2 - V*dC/dX -mu*C.
Many people would be very happy if this worked, but such a magic transformation does not exist. Unfortunately.

Iniciar sesión para comentar.

Respuestas (0)

Etiquetas

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by