How I can give condition & plot the solution of this differential equation. . . . . . . Please Guide
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1071040/image.png)
This is the equation for which
boundery condition are
theta(z=0)=0 degree
theta(z=h)=90 degree
where h=6
z=0:h
how to give condition here
e=8.85*10^-12
dele=11
E=1
k11=9
k33=9
k22=11
syms theta(z) z dtheta
dtheta=diff(theta,z)
d2theta=diff(theta,z,2)
eqn=d2theta+((k33-k11)*cos(theta)*sin(theta))*(dtheta)^2*(1/(k11*(cos(theta))^2+k22*(sin(theta))^2))+e*dele*E^2*cos(theta)*sin(theta)*(1/(k11*(cos(theta))^2+k22*(sin(theta))^2))
cond(theta(0)==0, theta(pi/2)==0)
thetaSol = dsolve(eqn,cond)
thetaSol = unique(simplify(thetaSol))
fplot(thetaSol)
7 comentarios
Respuestas (3)
Torsten
el 22 de Jul. de 2022
Editada: Torsten
el 22 de Jul. de 2022
dsolve doesn't succeed. Thus use a numerical solver (bvp4c) to solve your equation.
syms A theta(z)
dtheta=diff(theta,z)
d2theta=diff(theta,z,2)
eqn = d2theta + A/2*sin(2*theta)==0;
cond = [theta(0)==0, theta(6)==pi/2];
thetaSol = dsolve(eqn,cond)
7 comentarios
Torsten
el 28 de Jul. de 2022
Not clear what you mean.
The boundary value for theta at z = 6 can be set by writing it in the variable "bv" of my code above. Experiment with it.
Sam Chak
el 22 de Jul. de 2022
Giiven the parameters, it seems that if you select initial values
and
, the boundary values are satisfied.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1074360/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1074365/image.png)
epsilnot = 8.85*10^-12;
dele = 11;
E = 1;
k11 = 9;
k33 = 9;
k22 = 11;
A = sqrt(dele*epsilnot*E^2/k11);
f = @(t, x) [x(2); ...
- (A/2)*sin(2*x(1))];
tspan = [0 6];
initc = [0 pi/12]; % initial condition
[t, x] = ode45(f, tspan, initc);
plot(t, x(:,1), 'linewidth', 1.5), grid on, xlabel('t'), ylabel('\theta')
x(end,1) % π/2 at θ(6)
MOSLI KARIM
el 16 de Feb. de 2023
%%
function answer
clc
clear all
close all
global A
epsilnot = 8.85*10^-12;
dele = 11;
E = 1;
k11 = 9;
k33 = 9;
k22 = 11;
A = sqrt(dele*epsilnot*E^2/k11);
solinit=bvpinit(linspace(0,6),[0;pi/12])
sol=bvp4c(@fct,@bc,solinit)
figure(1)
plot(sol.x,sol.y(1,:))
function dxdy=fct(x,y)
dxdy=[y(2); -(A/2)*sin(2*y(1))];
end
function res=bc(ya,yb)
res=[ya(1);yb(1)-90]
end
end
0 comentarios
Ver también
Categorías
Más información sobre Particle & Nuclear Physics en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!