Organize matrix data into Bins using loop
    6 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Ben Whitby
 el 19 de Jul. de 2022
  
    
    
    
    
    Comentada: Ben Whitby
 el 20 de Jul. de 2022
            Hi All,
I have some time series data in a matix, called NorthBlindChSpeed1. What I want to do is organise that data into evenly spaced Bins. The code I have so far, whcih works, is as shown below 
NorthBlindChSpeed1 = [0.2; 0.4; 0.8; 0.8; 1; 1.19; 0.3; 1.41; 1.47; 1.51];
B1 =(NorthBlindChSpeed1(:, 1)< 0.2  & NorthBlindChSpeed1(:,1)>= 0);
B2 =(NorthBlindChSpeed1(:, 1)< 0.4  & NorthBlindChSpeed1(:,1)>= 0.2);
B3 =(NorthBlindChSpeed1(:, 1)< 0.6  & NorthBlindChSpeed1(:,1)>= 0.4);
B4 =(NorthBlindChSpeed1(:, 1)< 0.8  & NorthBlindChSpeed1(:,1)>= 0.6);
B5 =(NorthBlindChSpeed1(:, 1)< 1.0  & NorthBlindChSpeed1(:,1)>= 0.8);
B6 =(NorthBlindChSpeed1(:, 1)< 1.2  & NorthBlindChSpeed1(:,1)>= 1.0);
B7 =(NorthBlindChSpeed1(:, 1)< 1.4  & NorthBlindChSpeed1(:,1)>= 1.2);
B8 =(NorthBlindChSpeed1(:, 1)< 1.6  & NorthBlindChSpeed1(:,1)>= 1.4);
This code works and it assigns the values in the Matrix NorthBlindChSpeed1 into the appropriate bins. The trouble with this code is that one has to manually assign the data to each Bin. For the real data set I will require 250 Bins... Is there a more efficient way to Bin this data??? Perhaps using a For Loop.
I appreciate your help. 
0 comentarios
Respuesta aceptada
  Stephen23
      
      
 el 19 de Jul. de 2022
        
      Editada: Stephen23
      
      
 el 19 de Jul. de 2022
  
      "Is there a more efficient way to Bin this data???"
Using inbuilt functions will be the most efficient approach, e.g. DISCRETIZE or HISTCOUNTS:
V = [0.2; 0.4; 0.8; 0.8; 1; 1.19; 0.3; 1.41; 1.47; 1.51];
E = 0:0.2:1.6; % bin edges
idy = discretize(V,E)
[cnt,~,idx] = histcounts(V,E)
These will be much better approaches than copy-and-pasting lines of code, using loops, or numbering variable names.
3 comentarios
  Stephen23
      
      
 el 19 de Jul. de 2022
				
      Editada: Stephen23
      
      
 el 19 de Jul. de 2022
  
			"It's not clear how I would do that using the binning method you have proposed."
Using arrays, because this is MATLAB. Forget about writing out lots of numbered variable names like that, that is a dead-end. And copy-and-pasting lines of code is just doing the computer's job for it, best avoided.
You should use ACCUMARRAY or perhaps GROUPSUMMARY or something similar:
V = [0.2; 0.4; 0.8; 0.8; 1; 1.19; 0.3; 1.41; 1.47; 1.51];
P = rand(1,numel(V)); % corresponding power values
E = 0:0.2:1.6; % bin edges
[cnt,~,idx] = histcounts(V,E);
A = accumarray(idx,P(:),[8,1],@sum)
B = zeros(8,1);
B(cnt>0) = groupsummary(P(:),idx,@sum)
Más respuestas (0)
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

