Help with DFT Algorithm (No FFT)
18 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Devin Hunter
el 3 de Ag. de 2022
Comentada: Devin Hunter
el 3 de Ag. de 2022
(Please refer to my first comment for further details regarding the issue) I am currently programming a script that plots the magnitude spectrum of a sinusoid, x(t) = 16cos(2*pi*100t), at Fs = 2kHz using discrete fourier transform (DFT) without using the FFT function as a way to fully understand the concept. The program is mostly complete, but I suspect there is something wrong with the way that I am collecting the complex numbers in the sum as the plot for magnitude spectrum does not represent what I believe it should represent once additional zeros and cycles are incorporated (see my first comment). Any advice to put me on the right track would be appreciated. The code that executes the DFT computation will be displayed below:
%% Input Vector Initialization Process
Fs = 2000; % Hz
n = 0:20-1;
x = 16 * cos(2 * pi * (1/20) * n); % Input Vector
%% Adding Additional Cycles (if needed)
cycles = 20;
xx = x; % x (expanded) = x
if cycles > 1
for j=2:cycles
xx = [xx x];
end
end
% Number of Zeroes Padded for x(n)
Z = 200;
%% Zero-Padding Process
xx = [xx zeros(1,Z)];
%% DFT Algorithm
X = []; %X(omega)
N = length(xx);
sum = 0;
df = Fs / N;
fr = (0:N-1)*df;
for k=0:N-1
for n=0:N-1
sum = sum + xx(n+1) * exp(-1i*2*pi*k*n / N);
end
X = [X sum];
sum = 0;
end
%% Plots
% Plotting Within Nyquist Range
nyq = ceil(length(X) / 2);
X = X(1:nyq);
fr = fr(1:nyq);
stem(fr,abs(X))
xlabel('Frequency (Hz)')
ylabel('|X(\omega)|')
title('Amplitude Spectrum of X(\omega)')
3 comentarios
Respuesta aceptada
Matt J
el 3 de Ag. de 2022
Editada: Matt J
el 3 de Ag. de 2022
When I carry out this calculation I get the following: .
No, because 1/3 of your xx are padded zeros. This will reduce your amplitude by a factor of 2/3, giving 3200.
Had you generated 30 cycles - giving you a duration of 600 samples with no zero padding - you would have seen an amplitude of 4800 as you predicted. This is confirmed below.
%% Input Vector Initialization Process
dT = 1; %<---Edited
n = 0:dT:20-1;%<---Edited
x = 16 * cos(2 * pi * (1/20) * n); % Input Vector
%% Adding Additional Cycles (if needed)
cycles = 30;
xx = x; % x (expanded) = x
if cycles > 1
for j=2:cycles
xx = [xx x];
end
end
% Number of Zeroes Padded for x(n)
Z = 0;
%% Zero-Padding Process
xx = [xx zeros(1,Z)];
N=numel(xx);
df=1/N/dT;%<---Edited
%% DFT Algorithm
F=exp(-1i*2*pi*(0:N-1)'.*(0:N-1) / N) ; %DFT matrix
X = F * xx(:);
%% Plots
% Plotting Within Nyquist Range
nyq = ceil(length(X) / 2);
X = X(1:nyq);
fr = (0:N-1)*df;
fr = fr(1:nyq);
stem(fr,abs(X))
xlabel('Frequency (Hz)')
ylabel('|X(\omega)|')
title('Amplitude Spectrum of X(\omega)')
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!