How to use Bag of features with inceptionv3?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
i have imdsTrain and imdsValidation
Then i want to bring this
bag = bagOfFeatures(trainingSet);
to use with this code
net = inceptionv3;
lgraph = layerGraph(net);
figure('Units','normalized','Position',[0.1 0.1 0.8 0.8]);
plot(lgraph)
net.Layers(1)
inputSize = net.Layers(1).InputSize;
lgraph = removeLayers(lgraph, {'predictions','predictions_softmax','ClassificationLayer_predictions'});
numClasses = numel(categories(imdsTrain.Labels));
newLayers = [
fullyConnectedLayer(numClasses,'Name','fc','WeightLearnRateFactor',10,'BiasLearnRateFactor',10)
softmaxLayer('Name','softmax')
classificationLayer('Name','classoutput')];
lgraph = addLayers(lgraph,newLayers);
lgraph = connectLayers(lgraph,'avg_pool','fc');
pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter( ...
'RandXReflection',true, ...
'RandXTranslation',pixelRange, ...
'RandYTranslation',pixelRange);
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain, ...
'DataAugmentation',imageAugmenter);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),imdsValidation);
options = trainingOptions('sgdm', ...
'MiniBatchSize',10, ...
'MaxEpochs',4, ...
'InitialLearnRate',1e-4, ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',3, ...
'ValidationPatience',Inf, ...
'Verbose',false ,...
'Plots','training-progress');
net = trainNetwork(augimdsTrain,lgraph,options);
i want to know how to use Bag of features as features with inceptionv3
0 comentarios
Respuestas (1)
Udit06
el 22 de Nov. de 2024 a las 6:24
You can refer to the following research paper for the same:
Lorente, Ò., Riera, I., & Rana, A. (2021). Image classification with classic and deep learning techniques. arXiv preprint arXiv:2105.04895.
0 comentarios
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!