how solve nonlinear equations ?
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
ahmed ashiry
el 18 de Feb. de 2015
Respondida: Erik S.
el 18 de Feb. de 2015
how to solve nonlinear equations ?
these 9 equations in 3 unknown but nonlinear
31.65951=sqrt((20460991.052399-x)^2+(11012393.207537-y)^2+(13140061.841029-z)^2)-sqrt((20462649.31-x)^2+(11012196.356-y)^2+(13137623.266-z)^2) 243.75898=sqrt((1704791.07688-x)^2+(20550181.098118-y)^2+(16863812.406607-z)^2)-sqrt((1706135.95-x)^2+(20548561.881-y)^2+(16865760.323-z)^2) -349.85327=sqrt((18327975.818007-x)^2+(1722639.77547-y)^2+(18786981.252914-z)^2)-sqrt((18326680.829-x)^2+(1720514.194-y)^2+(18788376.839-z)^2) -575.16382=sqrt((12050174.649623-x)^2+(-9980816.456693-y)^2+(21382458.132242-z)^2)-sqrt((12049062.298-x)^2+(-9983309.044-y)^2+(21381885.534-z)^2) 441.83588=sqrt((6415962.553149-x)^2+(15826350.755284-y)^2+(20754833.300093-z)^2)-sqrt((6418526.123-x)^2+(15826408.315-y)^2+(20754019.037-z)^2) -255.03605=sqrt((18966834.575125-x)^2+(6395897.26812-y)^2+(17720969.794907-z)^2)-sqrt((18965851.475-x)^2+(6393896.947-y)^2+(17722730.048-z)^2) 258.29132=sqrt((26283508.487939-x)^2+(-1051136.220342-y)^2+(4730820.234619-z)^2)-sqrt((26282933.567-x)^2+(-1051377.055-y)^2+(4733941.445-z)^2) -550.04848=sqrt((15456741.418182-x)^2+(19573966.047127-y)^2+(-9158923.170409-z)^2)-sqrt((15456435.97-x)^2+(19572808.522-y)^2+(-9161842.101-z)^2) 549.43288=sqrt((25702282.7043-x)^2+(2962424.062583-y)^2+(-6373870.064627-z)^2)-sqrt((25703029.058-x)^2+(2962107.626-y)^2+(-6370839.228-z)^2) but when using solve function [x,y,z] = solve('sqrt((20460991.052399-x)^2+(11012393.207537-y)^2+(13140061.841029-z)^2)-sqrt((20462649.31-x)^2+(11012196.356-y)^2+(13137623.266-z)^2)=31.65951', 'sqrt((1704791.07688-x)^2+(20550181.098118-y)^2+(16863812.406607-z)^2)-sqrt((1706135.95-x)^2+(20548561.881-y)^2+(16865760.323-z)^2)=243.75898', 'sqrt((18327975.818007-x)^2+(1722639.77547-y)^2+(18786981.252914-z)^2)-sqrt((18326680.829-x)^2+(1720514.194-y)^2+(18788376.839-z)^2)=-349.85327', 'sqrt((12050174.649623-x)^2+(-9980816.456693-y)^2+(21382458.132242-z)^2)-sqrt((12049062.298-x)^2+(-9983309.044-y)^2+(21381885.534-z)^2)=-575.16382', 'sqrt((6415962.553149-x)^2+(15826350.755284-y)^2+(20754833.300093-z)^2)-sqrt((6418526.123-x)^2+(15826408.315-y)^2+(20754019.037-z)^2)=441.83588', 'sqrt((18966834.575125-x)^2+(6395897.26812-y)^2+(17720969.794907-z)^2)-sqrt((18965851.475-x)^2+(6393896.947-y)^2+(17722730.048-z)^2)=-255.03605', 'sqrt((26283508.487939-x)^2+(-1051136.220342-y)^2+(4730820.234619-z)^2)-sqrt((26282933.567-x)^2+(-1051377.055-y)^2+(4733941.445-z)^2)=258.29132', 'sqrt((15456741.418182-x)^2+(19573966.047127-y)^2+(-9158923.170409-z)^2)-sqrt((15456435.97-x)^2+(19572808.522-y)^2+(-9161842.101-z)^2)=-550.04848', 'sqrt((25702282.7043-x)^2+(2962424.062583-y)^2+(-6373870.064627-z)^2)-sqrt((25703029.058-x)^2+(2962107.626-y)^2+(-6370839.228-z)^2)=549.43288')
the solution was empty x = [ empty sym ] y = [] z = []
why???????????????????/
5 comentarios
Erik S.
el 18 de Feb. de 2015
Since it is an overdetermined system (more equations than variables) is it a least squars solution you need or what do you mean by solution?
Respuesta aceptada
Erik S.
el 18 de Feb. de 2015
Look in the documentation for the function lsqnonlin
It can solve nonlinear least squares problems.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Surrogate Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!