Evaluating a double integral using the trapezoidal rule

7 visualizaciones (últimos 30 días)
Robert
Robert el 22 de Feb. de 2011
Respondida: Mohammed el 12 de Dic. de 2023
I am trying to take the double integral of the function using the Trapezoidal rule for G=integral (3*x.^2*y+cos(2*x)*sin(y)+2+4*y.^-2*x+5*y)dxdy with x interval 0 to 2pi and y interval 1 to 10. I found a formula for it but don't know the proper syntax to enter it in. We must use the trapezoidal rule because we are comparing different techniques for evaluating integrals. Here is what I have so far:
x1=0;
x2=2*pi;
y1=1;
y2=10;
N=101
dx=(x2-x1)/(N-1);
dy=(y2-y1)/(N-1);
x=x1:dx:x2;
y=y1:dy:y2;
g(x,y)=3*x.^2*y+cos(2*x)*sin(y)+2+4*y.^-2*x+5*y;
N=101;
for i=1:N+1
for j=1:N+1
out(i,j)=((dx*dy)/4)*(g(i,j(1,1))+g(i,j(1,N))+g(i,j(N,1))+g(i,j(N,N))+2*(g(i,j(1,2:1:N-1))+g(i,j(N,2:1:N-1))+g(i,j(2:1:N-1,1))+g(i,j(2:1:N-1,N)))+4*(sum(g(i,j(2:1:N-1,2:1:N-1)))));
end
end
The really long formula is from this source: http://www.math.ohiou.edu/courses/math344/lecture24.pdf on page 2. I feel that I could streamline the code by using more summation but I do not know how to do that.

Respuesta aceptada

Andrew Newell
Andrew Newell el 22 de Feb. de 2011
How about this:
N = 101;
x = linspace(0,2,N)*pi;
y = linspace(1,10,N);
dx = diff(x(1:2));
dy = diff(y(1:2));
[x,y] = meshgrid(x,y);
mat = 3*x.^2.*y+cos(2*x).*sin(y)+2+4*y.^(-2).*x+5.*y;
mat(2:end-1,:) = mat(2:end-1,:)*2;
mat(:,2:end-1) = mat(:,2:end-1)*2;
out = sum(mat(:))*dx*dy/4;

Más respuestas (2)

Mohammed
Mohammed el 12 de Dic. de 2023
∫ 𝑠𝑖𝑛𝑥𝑑𝑥 𝜋 0 = 𝑐𝑜𝑠

Mohammed
Mohammed el 12 de Dic. de 2023
∫5 1 1/x 𝑑𝑥 = 𝑙𝑛x

Categorías

Más información sobre Programming en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by