how to change the rise time of step input in simulink
20 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Swasthik Baje Shankarakrishna Bhat
el 19 de Sept. de 2022
Respondida: Paul
el 22 de Sept. de 2022
Hello,
I want to change the rise time of the step input in simulink. I tried the transfer function 1/(s+1) but not satifying my requirement. Can someone suggest me some tricks. Thanks in advace.
Regards,
Swasthik
2 comentarios
Sam Chak
el 19 de Sept. de 2022
Can you specify all the performance requirements?
What did you mean by "tried the transfer function"? What is that transfer function for? For Plant, Actuator, or Compensator, or Prefilter? If possible, please the Plant transfer function.
Respuesta aceptada
Sam Chak
el 21 de Sept. de 2022
Editada: Sam Chak
el 22 de Sept. de 2022
Edit: I created a general one so that you can enter the desired ramp up parameters:
% u = min(1, max(0, "Linear Line function"));
ramp_start = 5;
ramp_end = 8;
t = linspace(0, 25, 251);
u = min(1, max(0, 1/(ramp_end - ramp_start)*(t - ramp_start)));
plot(t, u, 'linewidth', 1.5), grid on, ylim([-1 2])
If you have Fuzzy Logic Toolbox license, then you can use this linsmf() function. Here is a demo for a Double Integrator:
% Plant
Gp = tf(1, [1 0 0])
% PID
kp = 0;
ki = 0;
kd = 0.8165;
Tf = kd;
Gc = pid(kp, ki, kd, Tf)
% Closed-loop system
Gcl = feedback(Gc*Gp, 1)
% Saturated Ramp Response
t = linspace(0, 25, 251);
u = linsmf(t, [5 8]); % rise time is from 5 to 8 sec
lsim(Gcl, u, t), ylim([-1 2]), grid on
3 comentarios
Sam Chak
el 21 de Sept. de 2022
I forgot to mention that although linsmf is user-friendly, it requires the Fuzzy Logic Toolbox.
If you don't have Toolbox, then you can try this alternative. It produces the same time-delayed saturated ramp signal.
% Syntax:
% u = min(1, max(0, "Linear Line function"));
t = linspace(0, 25, 251);
u = min(1, max(0, 1/3*(t - 5)));
plot(t, u, 'linewidth', 1.5), grid on, ylim([-1 2])
Más respuestas (3)
Timo Dietz
el 20 de Sept. de 2022
Editada: Timo Dietz
el 20 de Sept. de 2022
Hello,
what about using a single-sided ramp function: b * (1 - exp(-a*s)) / s^2
The gradient of the rising slope is '1', so after the time 'a' the amplitude 'a' is reached. The factor 'b' should finally allow you to control the steepness of the 'step'.
Does this meet your requirement?
3 comentarios
Timo Dietz
el 21 de Sept. de 2022
Editada: Timo Dietz
el 21 de Sept. de 2022
Hello,
I thought you are searching for a solution in the frequency/laplace domain since you mentioned the pT1.
So, with 'H_slope = b/a * (1 - exp(-a*s)) / s^2' you can control the slope (in time domain) via a and b:
syms s;
a = 1.5; % time after which amplitude is reached
b = 2; % amplitude
% frequency domain
H_slope = b/a * (1 - exp(-a*s)) / s^2;
% time domain
f_slope = ilaplace(H_slope);
fplot(f_slope, [0 2]);
grid on;
Swasthik Baje Shankarakrishna Bhat
el 21 de Sept. de 2022
1 comentario
Sam Chak
el 21 de Sept. de 2022
It's great to hear that it works. If you find the solution is helpful, please consider accepting ✔ and voting 👍 the Answer. Thanks!
Ver también
Categorías
Más información sobre General Applications en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!