How to calculate and sketch the Fourier Transform of a gaussian function?
    5 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Nathan
 el 22 de Sept. de 2022
  
    
    
    
    
    Comentada: Paul
      
      
 el 22 de Sept. de 2022
            Hello,
I have the following function:
(exp(-pi.*x.^2) + 0.25.*exp((-pi.*x.^2)/16))
I'm trying to calculate and sketch its fourier transform version. 
This is what I tried but it seems wrong.
x_fit_func = @(x)  (exp(-pi.*x.^2) + 0.25.*exp((-pi.*x.^2)/16));
x = linspace(-10, 10, 50);
x_F = fft(x_fit_func(x))/numel(x);
Fs = 1/mean(diff(x));
Fn = Fs/2;
Fv = linspace(-1, 1, numel(x_F))*Fn;
Iv = 1:numel(Fv);
figure
plot(Fv, fftshift(abs(x_F)))
grid
0 comentarios
Respuesta aceptada
  Paul
      
      
 el 22 de Sept. de 2022
        Hi Steven
What doesn't seem correct? The only issue I see is the calculation of Fv, modified below.
x_fit_func = @(x)  (exp(-pi.*x.^2) + 0.25.*exp((-pi.*x.^2)/16));
x = linspace(-10, 10, 50);
x_F = fft(x_fit_func(x))/numel(x);
Fs = 1/mean(diff(x));
Fv = (-25:24)/50*Fs; % frequency vector for N = 50 (N is even)
figure
plot(Fv, fftshift(abs(x_F)))
grid
2 comentarios
  Paul
      
      
 el 22 de Sept. de 2022
				I'm not sure how impulse response has entered the dicussion or what fft(f_x) means without seeing a definition of f_x.
My code is your code.  All I did was correct the calculation of the Fv vector. Is that the part that needs further explanation? 
Más respuestas (0)
Ver también
Categorías
				Más información sobre Discrete Fourier and Cosine Transforms en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


