how to solve logarithm equation

6 visualizaciones (últimos 30 días)
MANANJAYA NAYAK
MANANJAYA NAYAK el 11 de Oct. de 2022
Respondida: David Hill el 11 de Oct. de 2022
i want to solve an logarithm equation and find the value of x
log10(x^4)-log10(x^3) == log10(5*x) -log10(2*x)
  4 comentarios
Ghazwan
Ghazwan el 11 de Oct. de 2022
syms a b c x
eqn = a*x^2 + b*x + c == 0
S = solve(eqn)
David Hill
David Hill el 11 de Oct. de 2022
Use fzero to solve a non-linear equation numerically. fzero

Iniciar sesión para comentar.

Respuesta aceptada

David Hill
David Hill el 11 de Oct. de 2022
f=@(x)log10(x.^4)-log10(x.^3)-log10(5*x) +log10(2*x);
fzero(f,2)
ans = 2.5000
x=.1:.1:10;
plot(x,f(x));

Más respuestas (2)

David Hill
David Hill el 11 de Oct. de 2022
if you plot, it never crosses zero.
f=@(x)log10(4*x)-log10(3*x) -log10(5*x) +log10(2*x)
f = function_handle with value:
@(x)log10(4*x)-log10(3*x)-log10(5*x)+log10(2*x)
fzero(f,1)
Exiting fzero: aborting search for an interval containing a sign change because NaN or Inf function value encountered during search. (Function value at -4.06772e+307 is -Inf.) Check function or try again with a different starting value.
ans = NaN

Torsten
Torsten el 11 de Oct. de 2022
Editada: Torsten el 11 de Oct. de 2022
log10(4*x)-log10(3*x) = log10((4*x)/(3*x)) = log10(4/3)
log10(5*x)-log10(2*x) = log10((5*x)/(2*x)) = log10(5/2)
So you try to "solve"
log10(4/3) = log10(5/2)
You can imagine that this makes no sense.

Etiquetas

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by