Unrecognized function or variable 'ode4'.

36 visualizaciones (últimos 30 días)
Khang Nguyen
Khang Nguyen el 11 de Oct. de 2022
Comentada: Torsten el 11 de Oct. de 2022
I am trying to use ode4 to validate with the Runge-Kutta method, but keep getiing this error when I call ode4 "Unrecognized function or variable 'ode4'."
h=0.1; % step size
x = 0:h:60;
%y(1) = [-0.5;0.3;0.2];
y(1) = -0.5;
F_xy = @(t) -3*cos(t/2) + 4*sin(t/2) + 1;
for i=1:(length(x)-1) % calculation loop
k_1 = F_xy(x(i));
k_2 = F_xy(x(i)+ 0.5*h*k_1);
k_3 = F_xy((x(i)+0.5*h*k_2));
k_4 = F_xy((x(i)+k_3*h));
y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h; % main equation
end
% validate using a decent ODE integrator
y0 = -0.5;
yx = ode4(F_xy, 0,h,60, y0)
plot(x,y,'o-', x, yx, '--')

Respuesta aceptada

Walter Roberson
Walter Roberson el 11 de Oct. de 2022
Editada: Walter Roberson el 11 de Oct. de 2022
  2 comentarios
Khang Nguyen
Khang Nguyen el 11 de Oct. de 2022
Editada: Khang Nguyen el 11 de Oct. de 2022
I still get the same error.
h=0.1; % step size
x = 0:h:60;
F_xy = @(t) -3*cos(t/2) + 4*sin(t/2) + 1;
y0 = -0.5;
L = length(x)
tspan = linspace(0,60,L)
yx = ode4(F_xy, tspan, y0)
Walter Roberson
Walter Roberson el 11 de Oct. de 2022
Did you download the .zip file from that Question, and unzip it and place the directory on your MATLAB path ?

Iniciar sesión para comentar.

Más respuestas (1)

Torsten
Torsten el 11 de Oct. de 2022
Editada: Torsten el 11 de Oct. de 2022
Look below at how k_1,...,k_4 must be computed in the case that your ODE function only depends on t, not y.
The classical Runge-Kutta boils down to the usual Simpson's rule.
h=0.1; % step size
x = 0:h:60;
%y(1) = [-0.5;0.3;0.2];
y(1) = -0.5;
F_xy = @(t) -3*cos(t/2) + 4*sin(t/2) + 1;
for i=1:(length(x)-1) % calculation loop
k_1 = F_xy(x(i));
k_2 = F_xy(x(i)+0.5*h);
k_3 = F_xy(x(i)+0.5*h);
k_4 = F_xy(x(i)+h);
y(i+1) = y(i) + (1/6)*(k_1+2*k_2+2*k_3+k_4)*h; % main equation
end
% validate using a decent ODE integrator
y0 = -0.5;
yx = ode4(@(t,y)F_xy(t), 0,h,60, y0);
plot(x,y,'o-', x, yx, '--')
function yout = ode4(F,t0,h,tfinal,y0)
% ODE4 Classical Runge-Kutta ODE solver.
% yout = ODE4(F,t0,h,tfinal,y0) uses the classical
% Runge-Kutta method with fixed step size h on the interval
% t0 <= t <= tfinal
% to solve
% dy/dt = F(t,y)
% with y(t0) = y0.
% Copyright 2014 - 2015 The MathWorks, Inc.
y = y0;
yout = y;
for t = t0 : h : tfinal-h
s1 = F(t,y);
s2 = F(t+h/2, y+h*s1/2);
s3 = F(t+h/2, y+h*s2/2);
s4 = F(t+h, y+h*s3);
y = y + h*(s1 + 2*s2 + 2*s3 + s4)/6;
yout = [yout; y]; %#ok<AGROW>
end
end
  3 comentarios
Walter Roberson
Walter Roberson el 11 de Oct. de 2022
The error between what two values? You cannot calculate the error unless you have an analytic solution.
h=0.1; % step size
x = 0:h:60;
y(1) = -0.5;
F_xy = @(t) -3*cos(t/2) + 4*sin(t/2) + 1;
syms t C
intF = int(F_xy(t), t)
intF = 
eqn = subs(intF, t, 0) + C == y(1)
eqn = 
sol = solve(eqn)
sol = 
intF = subs(intF + C, C, sol)
intF = 
... that should be the analytic solution.
Torsten
Torsten el 11 de Oct. de 2022
If you compare your code and ode4, you'll see that they are identical. So there should be no difference in the results.

Iniciar sesión para comentar.

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by