Implementing numerical method for PDE
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
schlang
el 13 de Oct. de 2022
Editada: Davide Masiello
el 13 de Oct. de 2022
Hello
I am trying to solve the following PDE
with intital and boundary conditions such that
. I used the second order centered finite difference discrtization for
and then want solve the ode system using ode15s
with intital and boundary conditions such that
and then want solve the ode system using ode15sHere is my attempt. When I plot the solution obtained from ode15s and compare it to the exact solution they are different. I am not if I made a mistake somewhere. Help is really appreciated
clc,clear,close all
% parameters
t0 = 0;
T = 1.0;
tspan = [t0 T];
xl = 0;
xr = 1;
m = 20;
x = linspace(xl,xr,m + 1);
dx = 1/m;
Uexact = @(t,x) exp(1i*(x-t));
% initial conditions
U0 = Uexact(0,x)';
U0 = U0(2:end-1);
% solve
fn = @(t,U) ODE(t,U,m,dx);
opts = odeset('RelTol',1e-13, 'AbsTol',1e-15);
[t,U] = ode15s(fn, tspan, U0, opts);
%compare with exact solution
plot(x(2:end-1),U(end,:))
hold on
plot(x(2:end-1),Uexact(T,x(2:end-1)))
function dUdt = ODE(t,U,m,dx)
A = eye(m-1);
A = A * (-2);
A = A + diag(ones(m-2,1),1);
A = A + diag(ones(m-2,1),-1);
A = (1/dx^2) * A;
g = zeros(m-1,1);
g(1) = g(1) + (1/dx^2) * exp(1i*(-1*t));
g(end) = g(end) + (1/dx^2) * exp(1i*(1-t));
dUdt = (1i) * (A*U) + g;
end
Thanks
2 comentarios
Respuesta aceptada
Davide Masiello
el 13 de Oct. de 2022
Editada: Davide Masiello
el 13 de Oct. de 2022
clear,clc
tspan = [0 1];
N = 100;
x = linspace(0,1,N);
dx = 1/(N-1);
Uexact = @(t,x) exp(1i*(x-t));
U0 = Uexact(0,x);
M = eye(N);
M(1,1) = 0;
M(N,N) = 0;
opts = odeset('Mass',M,'MassSingular','yes');
[t,U] = ode15s(@(t,U)yourPDE(t,U,N,dx), tspan, U0, opts);
plot(x,real(U(end,:)),'k',x(1:4:end),real(Uexact(1,x(1:4:end))),'r.')
xlabel('x')
ylabel('U')
title('At final time')
legend('Numerical','Exact','Location','Best')
plot(x,real(U(1:3:end,:)),'k',x(1:3:end),real(Uexact(t(1:3:end),x(1:3:end))),'r.')
xlabel('x')
ylabel('U')
title('At several times')
function dUdt = yourPDE(t,U,N,dx)
dUdt(1,1) = U(1)-exp(-1i*t);
dUdt(2:N-1,1) = 1i*(U(1:end-2)-2*U(2:end-1)+U(3:end))/dx^2;
dUdt(N,1) = U(end)-exp(1i*(1-t));
end
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

