what is the problem of my code doing inverse Poisson cumulative distribution?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Daniel Niu
el 18 de Oct. de 2022
Comentada: Daniel Niu
el 19 de Oct. de 2022
Dear friends,
I write a code doing inverse Poisson cumulative distribution. However, the code get same results compared to icdf function when u>0.5. When u<0.5, the result is 1 less than the result from icdf.
function m = iPoisson(lambda,u)
p(1)=exp(-lambda)/factorial(0);
absolute=zeros(1,1000);
summation=p(1);
%u=0.6322;
%u=rand(1);
for k=2:1000
p(k)=lambda.^(k-1)*exp(-lambda)./factorial(k-1);
summation=summation+p(k);
distance(k-1)=abs(summation-u);
[a,b]=min(distance);
m=b;
end
end
2 comentarios
Torsten
el 18 de Oct. de 2022
Use a while-loop instead of a for loop for which you don't know when to stop it (do you know how large factorial(1000) is ?) .
Respuesta aceptada
Torsten
el 18 de Oct. de 2022
Editada: Torsten
el 18 de Oct. de 2022
lambda = 10;
u = 0.6;
m = iPoisson(lambda,u)
m1 = icdf('Poisson',u,lambda)
function m = iPoisson(lambda,u)
if u == 1
m = Inf;
return
end
s = 1;
m = 0;
quot = 1;
while s*exp(-lambda) < u
m = m + 1;
quot = quot*lambda/m;
s = s + quot;
end
end
3 comentarios
Torsten
el 19 de Oct. de 2022
You search for the first value m for which
exp(-lambda) * sum_{i=0}^{i=m} lambda^i/factorial(i) >= u.
Since
s(k) = sum_{i=0}^{i=k} lambda^i/factorial(i)
is increasing with k, you need to add the terms
quot(i) = lambda^i / factorial(i)
by writing
s = s + quot
as long as
exp(-lambda)*s(k) < u.
If
exp(-lambda)*s(k) >= u
for the first time, then
m = k-1
Since
quot(i) = lambda/i * quot(i-1)
with
quot(0) = 1
you can update
quot = quot * lambda/i
with an initial value for quot
quot = 1
and you do not need to recalculate
quot = lambda^i / factorial(i)
for every value of i. Moreover, the simple update
quot = quot * lambda/i
prevents overflow in numerator and/or denominator since lambda^i and factorial(i) both can become very large.
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!