PCA of 6 axis
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
hayder al-omairi
el 10 de Nov. de 2022
Comentada: hayder al-omairi
el 26 de En. de 2023
Hallo, I have 3-axis accelerometer and 3-axis gyroscope, I am planning to reduce these 6 axis to only one or two significant axis that gives more details than others by using PCA
2 comentarios
William Rose
el 10 de Nov. de 2022
That sounds interesting. If you want some assistance, please post some sample data and an initial attempt at code (even if it does not run) to do the principal component analysis. Good luck!
Respuesta aceptada
Amey Waghmare
el 21 de Nov. de 2022
Hi,
As per my understanding, you want to use Principle Component Analysis (PCA) to reduce the dimensionality of your dataset from 6 to 1 or 2 dimensions.
To perform PCA, you can use MATLAB command ‘pca’, which calculates the principal component coefficients for the dataset. You can also specify the number of components to return by using argument ‘NumComponents’.
Assume that the data is stored in variable ‘X’.
[coeff, score] = pca(X, 'NumComponents', 2);
‘coeffs’ are the principal component coefficients, and ‘score’ is the dataset in reduced dimension as specified by the ‘NumComponents’ argument.
For more information on 'pca' command, you can visit the documentation page: https://in.mathworks.com/help/stats/pca.html
Hope this resolves the issue.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!